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Abstract Modern machine learning has enabled parame-
ter inference from event-level data without the need to first
summarize all events with a histogram. All of these unbinned
inference methods make use of the fact that the events are sta-
tistically independent so that the log likelihood is a sum over
events. However, this assumption is not valid for unbinned
inference on unfolded data, where the deconvolution process
induces a correlation between events. We explore the impact
of event correlations on downstream inference tasks in the
context of the OmniFold unbinned unfolding method. We
find that uncertainties may be significantly underestimated
when event correlations are excluded from uncertainty quan-
tification.
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1 Introduction

Accurate and precise parameter estimation is a central task
in high-energy physics data analysis. Traditional approaches
usually involve summarizing high-dimensional, event-level
data into a small number of observables, whose differen-
tial cross sections are approximated with histograms. Best
fit parameters and confidence intervals are then extracted
using first-principles-based or Monte Carlo simulation-based
templates using binned likelihood approaches. While effec-
tive, these methods can suffer from significant information
loss and potential biases due to the dimensionality reduc-
tion and the binning. Furthermore, classical methods cannot
be employed to study the multidifferential cross section of
many observables simultaneously due to the increasing dif-
ficulty of binning effectively as the number of dimensions
increases. Even if a simultaneous binned measurement was
performed, it is not feasible to extract the differential cross
section of lower-dimensional observables computed from the
higher-dimensional phase space.

The advent of modern machine learning techniques has
enabled unbinned inference methods that operate directly on
event-level data without the need for dimensionality reduc-
tion or histogramming [1]. These methods exploit the full
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information content of the data, leading to improved sen-
sitivity and reduced biases in parameter estimation. A key
assumption underlying these unbinned methods is the sta-
tistical independence of events, which allows the joint like-
lihood to be expressed as a product over individual event
likelihoods, or equivalently, the log-likelihood as a sum over
events:

lnL(θ) =
N∑

i=1

ln p(xi |θ), (1.1)

where xi denotes the observed data for event i, θ represents
the parameters of interest, and p(xi | θ) is the probability den-
sity function for event i given θ . The widely-used asymptotic
formulae [2] for likelihood-based statistics apply also to the
unbinned case and can significantly accelerate the calculation
of confidence intervals and p-values.

Such methods have been effectively applied to detector-
level data [3], where the assumption of the statistical inde-
pendence of events holds. However, this assumption of event
independence does not hold in the context of unfolded data.
Unfolding is the process of statistically removing detector
distortions to produce cross-section measurements at the
particle-level. These results are independent of the detector
and can thus be analyzed outside of experimental collabora-
tions. Unfolding is an ill-posed inverse problem that requires
regularization techniques [4–7] and introduces correlations
between events due to the deconvolution process. These cor-
relations violate the independence assumption. Nonetheless,
unfolded data have been used extensively to measure fun-
damental parameters, fit parton distribution functions [8],
tune parton shower Monte Carlo simulators [9], and search
for physics beyond the Standard Model [10]. All of these
studies use binned data, where correlations can be properly
accounted with a covariance matrix. The usual Gaussian limit
of Eq. (1.1) results in a χ2 test statistic. With bin-by-bin cor-
relations, the statistic most often used is

χ2
full(θ) = (D − P(θ))��−1(D − P(θ)), (1.2)

where D is the vector of unfolded data counts, P(θ) is the
vector of predicted counts from the model at parameters θ ,
and � is the covariance matrix encoding statistical and sys-
tematic uncertainties. As with Eq. (1.1), asymptotic formu-
lae apply to Eq. (1.2) for deriving confidence intervals and
p-values.

Recent innovations from machine learning have enabled
unbinned unfolding [11–13]. These methods are based on
discriminative [14–16] or generative methods [17–28] and
there are now also experimental results with some of these
approaches [29–38]. One can bin the unbinned results and use
Eq. (1.2) for parameter estimation, but we are not aware of
an analog to Eq. (1.1) that accounts for correlations. The goal

of this paper is explore how unbinned unfolded results can
be used for parameter estimation. While there are a growing
number of unbinned experimental results, the methods and
publications are sufficiently new that there are currently no
parameter extractions using these data. Our study will estab-
lish some best practices for using unbinned unfolded data for
parameter estimation as well as new research questions for
improving these protocols in the future.

In particular, we are interested in a number of questions:
(1) is there an advantage in precision for binning after the
unfolding instead of before? (2) is there any effect on the
inference precision if correlations are ignored when creating
the test statistic? and (3) if we ignore correlations and use
Eq. (1.1) for the unbinned data, are the asymptotic uncer-
tainties still valid? For (1), we will compare classical binned
unfolding with an unbinned approach that is binned post-
hoc for inference. To address (2), we have to use binned
inference since we do not know the unbinned analog of
Eq. (1.2). Lastly, we will compare asymptotic and numer-
ical uncertainties to answer (3). Reference [14] found that
binning before or after unfolding gave similar accuracy, but
a study of precision for downstream parameter estimation
has not yet been addressed. Since the detector distortions
are treated unbinned, we hypothesized that unbinned unfold-
ing could be more precise than traditional, binned unfolding.
Furthermore, we expected that using correlations in the test
statistic would lead to more precise inference than ignoring
correlations in the test statistic. Lastly, we hypothesized that
the asymptotic formulae would not give correct uncertain-
ties when correlations are ignored (and correct ones when
they are included when possible). For a series of Gaussian
examples, we will confront each of these hypotheses with
empirical evidence in order to address our main questions
above.

The remainder of this paper is organized as follows. In
Sect. 2, we detail the methodology of unbinned unfolding and
inference. Section 3 outlines the experimental setup, includ-
ing the construction of simulated datasets. Numerical results
for one and many dimensions are presented in Sect. 4. The
paper ends with conclusions and outlook in Sect. 5.

2 Methodology

2.1 Unbinned unfolding

We studied unbinned unfolding using the OmniFold [14,15]
method, as it is the one that has been used in most recent
unbinned measurements. The task is to find the true dis-
tribution given observed data from a detector that includes
non-negligible resolution or smearing effects. An essential
requirement is to have an accurate detector simulation that
maps the generated particle level observables (gen particle) to
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the output of the detector (sim particle). An a-priori estimate
of the true distribution is used to generate the gen-particle
distribution in the Monte Carlo. The a-priori estimate is nec-
essary because the true distribution is what we would like to
measure using the data and it is either not known in advance,
or the goal is to improve upon prior measurements, which
are the basis for the a-priori estimate, with the data that are
the input to the unfolding. The OmniFold method finds the
Monte Carlo event weights necessary to reweight the gen-
particle distribution, from the a-priori estimate, to the true
distribution using an iterative process.

Each OmniFold iteration consists of two steps. The first
step is to find the Monte Carlo event (“pull”) weights that will
make the sim-particle distribution match the detector data.
The desired unfolding output is a function that gives an event
weight from gen-particle inputs, not sim-particle inputs. The
second step of OmniFold provides this by finding Monte
Carlo event (“push”) weights that will make the gen-particle
distribution match the pull-weighted gen-particle distribu-
tion. The push-weighted Monte Carlo sim-particle distribu-
tion can then be compared to the detector data distribution. If
they agree, the task is complete. If they disagree, the next iter-
ation repeats the procedure starting with the push-weighted
Monte Carlo sample, where the product of the push weights
of all previous iterations are retained as event weights. The
step weights in each iteration become closer to one as the pro-
cess converges, usually after about five iterations. The final
output is the weighted generation, i.e. particle level Monte
Carlo sample, where each event is weighted by the product
of the push weights for all of the iterations.

A detailed discussion of unbinned unfolding and the opti-
mization of hyperparameters, such as the number of itera-
tions, can be found in reference [39].

2.2 Unbinned inference

Inference of model parameters from unbinned data is com-
monly done using a maximum likelihood fit. Asymptotic
uncertainties on the model parameters are determined from
finding the parameter values that give a change in log like-
lihood of 0.5, corresponding to one standard deviation in
the Gaussian approximation (e.g. the likelihood is locally
quadratic near the maximum). Methods exist [40] for taking
into account event weights in the evaluation of the asymptotic
uncertainties if the weights are statistically independent. Ref-
erence [40] suggests a method for taking into account weight
correlations if they can be parameterized. For our case, there
is no simple parameterization, but we leave further explo-
rations of related strategies to future work. In our study, we fit
the output of the OmniFold unfolding, which is the weighted
Monte Carlo gen-particle distribution. The OmniFold event
weights are not statistically independent. We study how these

weight correlations impact the evaluation of the asymptotic
uncertainties from the maximum likelihood fit.

Statistically valid inference uncertainties, even when ana-
lyzing unfolding output events with weight correlations, can
be obtained numerically, either by using the bootstrap method
[41], or from statistically independent pseudo datasets. In
the work presented here, we use the numerical evaluation of
the inference uncertainties as a valid reference for our stud-
ies of the asymptotic inference uncertainties. The numerical
uncertainty is defined as the root-mean-square (RMS) of the
distribution of inference results from either a collection of
statistically independent pseudo datasets or a set of boot-
strap samples derived from the dataset being unfolded and
analyzed. We use “RMS” as a useful shorthand for the numer-
ical uncertainty in the text and figures below.

2.3 Implementation

We consider both a one dimensional and multi-dimensional
inference task described in the next section. For the one-
dimensional study, we use kernel density estimation (KDE)
with a uniform kernel over a fixed radius to estimate the
probability densities that are used within OmniFold. The esti-
mated probability density function (PDF) p at point x in the
feature space is proportional to the number of points within
δx of x . The pull weight in step 1 for a Monte Carlo event
at xs is w1 = pd(xs)/ps(xs), where pd and ps are the PDFs
for the data and sim-particle Monte Carlo, respectively. Like-
wise, the push weight for step 2 is w2 = pg(xg, w1)/pg(xg),
where pg(xg, w1) is the gen-particle PDF evaluated with the
weights w1 from step 1.

In higher dimensions, we instead train neural network
binary classifiers to find the weight functions used in Omni-
Fold. In step 1, a classifier is trained to distinguish data
from sim-particle Monte Carlo and the pull weight is w1 =
c1(xs)/(1 − c1(xs)), where c1(xs) is the classifier output,
which is the probability that an event at xs is from the data
distribution. In step 2, another classifier is trained to dis-
tinguish gen-particle Monte Carlo weighted by w1 from
gen-particle Monte Carlo and the push weight is w2 =
c2(xg)/(1 − c2(xg)), where c2(xg) is the classifier output.

3 Setup

To demonstrate parameter estimation in addition to unfold-
ing, we need data generated from a model with a known para-
metric family. In order to run enough (pseudo)experiments
to test the coverage of the inference (in addition to research
and development), we also need to be able to generate many
examples from the model. Therefore, we focus on Gaussian
examples. Many physics problems of interest share many fea-
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tures with this setup; at the same time, we expect the sign and
magnitude of the features we observe to be problem-specific.

3.1 Data

In our one-dimensional studies, the true model is a Gaus-
sian with parameters μtrue = 0.2 and σ 2

true = 0.81. The
parameter values used in the multidimensional studies are
given in Appendix A. 10,000 events are generated for the
“truth” dataset. A larger Monte Carlo (MC) sample of size
100,000 events is also generated from a Gaussian with mean
0.0 and variance 1.0. In traditional unfolding, this MC dataset
would be the one to derive the response matrix. It also serves
as the initialization for the unfolded result. Both the true
and ‘particle-level’ MC sample are passed through the same
detector distortions: a Gaussian smearing with mean zero and
various resolutions (i.e. detector distortions) ranging from 0
to 0.75. For each parameter set, datasets are generated and
binned into a fixed number of bins (15 bins spanning the
range [−3, 4]). The true mean is slightly positive, so the range
included in the binning is larger on the positive side. In the
unbinned cases, the result is unbinned and presented as a
histogram for illustration and comparison purposes.

For each parameter set that we study, we generate 500 sta-
tistically independent pseudo datasets where the number of
events in each dataset is chosen from a Poisson distribution
with a mean of 10,000. Figure 1 shows example distributions.
In a real application, where there is only one dataset being
analyzed, the bootstrapping method [41] could be used to
determine the statistical uncertainties numerically. We have
verified that bootstrapping and independent pseudo datasets
give the same results for the statistical uncertainties, as eval-
uated by the RMS of the inference results of 500 datasets.

3.2 Neural networks

We use the Tensorflow 2.17.0 [42] and Keras 3.4.1 frame-
works to implement and train our Neural Networks (NNs).
The NN consists of three fully connected layers with 50 nodes
per layer. In our nominal results, we use a modified version
of the gelu [43] activation function, though we have also
explored using relu activation. The gelu function is mod-
ified as

GELU(x) ≈ 0.5 x
(

1 + tanh
[
β

(
x + 0.044715 x3

)])

where β is a parameter that tunes the distance scale of the
transition from flat to a slope of 1. With β = 1, the function
is the original gelu, which gives a high degree of regular-
ization and a larger distance scale for the output event weight
correlations. With β = 4, the regularization is more modest
and the correlations are closer to the output withrelu, which
is the asymptotic case for large β. More details on our choice

of activation function are given in Appendix B. The NNs are
trained using the Adam optimizer [44] with a learning rate of
5 × 10−4. The loss function is binary cross entropy. Data are
equally divided into train and test samples for monitoring.
The NNs are trained for 50 epochs with a batch size of 104.
We remove the output dependence on the random initial NN
model weights, which are set with the GolrotUniform
method [45], by averaging the final event weights of 10 runs
of the full OmniFold procedure, each with different random
initial model weights. The effects of this ensembling [46] are
described in more detail in Appendix C.

These hyperparameter values were chosen to give sta-
ble results with reasonable convergence. When exploring the
hyperparameter space, we monitored several aspects of the
unfolding, including:

• The mean and RMS of the step 1 and step 2 weight dis-
tributions for each OmniFold iteration. Satisfactory con-
vergence is indicated by a mean weight of 1 and a narrow
weight distribution.

• The residuals of the unfolded distribution, compared to
the known true distribution after each iteration for both
the gen-particle and sim-particle distributions in all fea-
ture dimensions.

• The mean and width of the distribution of the difference
between the OmniFold event weight and the known true
event weight. Since the multivariate normal parameters
are known in our study for both the Monte Carlo and
true distribution, the true event weight can be calculated
for each event. For the 1D study, this can be visualized
as a simple graph. Example graphs of the event weight
function can be found in Appendix B.

Examples of the monitoring output can be found in the code
repository for this paper.

As an alternative to NNs in the one-dimensional studies,
we also use KDEs with a fixed kernel of fixed radius 0.1.

4 Numerical results

We start with the one-dimensional example and first estab-
lish a binned baseline. Then, we consider the unbinned case
(also in one dimension), by first characterizing the size of
the correlations. Lastly, we explore the higher-dimensional
inference task (which has no binned baseline).

4.1 Binned baseline

4.1.1 Binned unfolding with IBU and inference

For comparison with unbinned approaches, we establish a
baseline in which the data are binned from the start. We per-
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Fig. 1 Histograms showing the datasets from the one-dimensional
study. The distributions on the left show the true distribution of the
observable compared with the gen-particle distribution of the Monte
Carlo. The center histograms show a sample detector-level distribution

of the observable compared with the sim-particle distribution of the
Monte Carlo. The right histogram shows the resolution function. For
these histograms, we used 31 bins in the range [−5, 5]

form Iterative Bayesian Unfolding (IBU) [47] (also known as
Lucy-Richardson deconvolution [48,49]) on the binned data,
which is similar to OmniFold in the binned limit. Both IBU
and OmniFold are iterative processes that converge to the
maximum likelihood estimate of the particle-level distribu-
tion given the detector-level data (see the Appendix of [14]).
The unfolded binned distribution is fit to a binned Gaussian
using a χ2 statistic. In our inference, two variants are con-
sidered: one that employs the full covariance matrix com-
puted from 500 bootstrap replicas of the unfolded data, and
another that uses only the diagonal elements of the covari-
ance matrix. The covariance is estimated numerically from
the ensemble of bootstrapped histograms. Parameter estima-
tion is performed by minimizing the χ2, and the uncertainties
are determined either by the asymptotic change in χ2 (with
�χ2 = 1) or numerically from the spread (standard devia-
tion or RMS) of the inferred parameters over the bootstrap
ensemble.

This binned baseline procedure provides a benchmark
against which the performance of the unbinned unfold-
ing (followed by either post-hoc binning for inference, or
unbinned inference) can be compared. For each parameter,
two sets of asymptotic analyses are performed: one obtained
from the fit using the full covariance matrix (“cov”) and
one using only the diagonal approximation (“cov_diag”). We
then calculate the mean asymptotic error and its standard
error (SEM) over the 500 replicas. In parallel, the numerical
uncertainty is obtained from the standard deviation of the
best-fit parameter values across these replicas.

First, we study the uncertainties in Fig. 2a and b for the
fitted mean (μ) and variance (σ 2), respectively. As the detec-
tor resolution deteriorates, the overall uncertainty increases,
as expected. Notably, the numerical uncertainty matches the
asymptotic error using the full covariance matrix but is con-
sistently smaller than the asymptotic error computed using

the diagonal covariance matrix, particularly for larger smear-
ing values. This indicates that the standard asymptotic error
estimation using only the diagonal values of the covari-
ance matrix overestimates the true confidence intervals when
the unfolding-induced correlations become significant. The
cause of the jump in the graphs of Fig. 2b is not known, but
this does not affect our conclusions. These findings under-
score the importance of incorporating the full covariance
structure in the inference process when computing asymp-
totic uncertainties.

Next, we quantify the bias in Fig. 3a and b for the evolution
of the mean best-fit values of μ and σ 2, respectively. In these
plots, the data points represent the average best-fit value at a
given smearing, with vertical error bars corresponding to the
SEM computed from the 500 replicas. In addition, a horizon-
tal dashed red line marks the true parameter value. For both
μ (Fig. 3a), and σ 2 (Fig. 3b), the estimates computed both
with and without using off-diagonal elements of the covari-
ance matrix are similar. In particular, all of the methods show
nearly the same bias as a function of smearing, which is cov-
ered by the uncertainty. The truth spectra are the same for
each smearing and thus the uncertainties are very correlated
between points.

These results provide an important baseline: they demon-
strate that with IBU and conventional binned inference,
the choice of covariance treatment can affect the inferred
uncertainties. In the subsequent sections, we compare these
findings with those obtained from the unbinned unfolding
approach.

4.2 Event-by-event correlations

For each parameter set, 500 statistically independent test
datasets are unfolded without binning using a fixed Monte
Carlo sample. Each Monte Carlo event i in the output of
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Fig. 2 Mean asymptotic error versus detector smearing for the a Gaus-
sian mean, μ, and b the variance σ 2 obtained from the full covari-
ance analysis (green circles) and the diagonal covariance approximation
(pink squares). The green stars represent the standard deviation com-

puted from the spread of the best-fit values over 500 bootstrap replicas.
Note that the numerical uncertainty agrees well with the asymptotic
error from the full covariance fit while the diagonal approximation con-
sistently overestimates the uncertainty at larger smearing values

Fig. 3 The mean best-fit value of a μ and b σ 2 is shown as a function
of the detector smearing, with error bars indicating the standard error
of the mean (SEM) over 500 bootstrap test datasets. Horizontal dashed

red lines mark the true values of μ = 0.2 and σ 2 = 0.81. Both fit meth-
ods (full covariance and diagonal approximation) yield similar central
values
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Fig. 4 Average weight correlation between two events as a function
of the absolute distance between the events in the observable. The four
curves show different values for the detector resolution. The top plots

show unfolding with the KDE approach within OmniFold, while the
bottom plots show results from using NNs within OmniFold. The error
bars show the RMS of the correlation values

unfolding dataset j is assigned a weight wi j by the unfold-
ing algorithm. This allows us to quantify the degree to which
the event weights for a pair of Monte Carlo events are corre-
lated in the unfolding.

Figure 4 shows the average weight correlation between
pairs of events as a function of the distance between the
pair of events in the observable for both the KDE and NN
approaches. The closer the events are to each other, the
stronger the weights are correlated, with a correlation of 1

at a distance of zero by construction. For perfect resolution,
the correlation quickly dies off as the distance between the
events grows. In principle, in this case, there should be no
correlations between events and so any residual correlation
is due to smoothing in the KDE or NN. The implicit regu-
larization within the KDE and NN is different. For example,
the KDE range parameter (δx) limits the length scale of cor-
relations, in the absence of detector smearing, while the NN
has no explicit length scale built into it. As the detector reso-
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Fig. 5 Covariance matrices of a histogram of the unfolding output for four detector resolution values (0, 0.25, 0.50, 0.75). The top plots show
unfolding with the KDE approach within OmniFold, while the bottom plots show results from using NNs within OmniFold. The histogram has 40
bins in the range [−4, 4]

lution gets worse, the range of the correlation increases. The
correlations themselves show a wave-like pattern as nearby
events are correlated and then anti-correlated beyond some
point in order to preserve the total number of events.

Another way to visualize the correlations is to bin the
data and construct covariance matrices. Figure 5 shows these
matrices using histograms (40 bins from −4 to 4 in the
observable) of the unfolding output, where the covariance
is calculated numerically from the 500 test datasets for each
resolution value. The results are consistent with the unbinned
evaluation of the weight correlations, shown in Fig. 4, and
additionally show that the distance scale of the correlations
does not depend strongly on the observable itself.

4.3 Parameter estimation in 1D with a KDE

To investigate the impact of the event weight correlations in
the unbinned unfolding output, we compare three ways of
performing the model parameter inference:

• An unbinned ML fit of the unbinned unfolding output,
which is the weighted Monte Carlo sample.

• A binned χ2 fit of the unfolding output that uses the full
covariance matrix for the histogram bins.

• A binned χ2 fit of the unfolding output that uses only
the diagonal elements of the covariance matrix for the
histogram bins.

For the binned χ2 fits, the covariance matrix of the histogram
bins is evaluated numerically from a set of histograms made
from the 500 test datasets. The inference uncertainty is deter-
mined for each model parameter from the RMS of the infer-
ence results for the 500 test datasets. We consider this to be
the most correct estimate of the inference uncertainty. We
compare this with the asymptotic uncertainties from the fits,
determined from the change in the model parameter that gives
a change of 0.5 in the log likelihood for the ML fit or a change
of 1 in the χ2. We also compare the unbinned unfolding with
the results of performing a binned unfolding using the Iter-
ative Bayesian Unfolding technique. For all binned results,
the Gaussian model predictions are integrated over the bins
in order to have histogram templates that are properly param-
eterized.

Figure 6 shows the inference uncertainty and bias as a
function of the detector resolution. We draw the following
conclusions from the results shown:

• The asymptotic uncertainties in the unbinned ML fit of
the unbinned unfolding are too low, do not depend on the
detector resolution, and agree with the correct uncertainty
only for the perfect detector resolution case. This can be
seen in the top plots, noting that the orange circles do
not depend on the smearing and they disagree with the
orange stars (hidden under the red stars) for all levels of
smearing except no smearing.
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Fig. 6 Inference uncertainty (top) and bias (bottom) on the model
mean (left) and variance (right) as a function of the detector resolution.
Unbinned unfolding (UBU) is compared with the results of binned Iter-
ative Bayesian Unfolding (IBU). The inference is done three ways: an
unbinned ML fit, a binned χ2 fit using the full covariance matrix for the

fit histogram, and a binned χ2 fit using only the diagonal elements of
the covariance matrix for the histogram. The blue band centered on the
true value shows ± the RMS inference uncertainty from the unbinned
unfolding unbinned ML fit to provide a scale reference

• The asymptotic uncertainties in the binned χ2 fits agree
with the correct uncertainty, as evaluated numerically
from the RMS of the inference distribution, when the
full covariance matrix is used. Pictorially, blue circles
agree with blue stars (hidden under the red stars) and the
green circles agree with the green stars.

• When the off-diagonal elements of the covariance matrix
are set to zero in the χ2 fit, the asymptotic uncertainties

are incorrect. This corresponds to the difference between
the red circles and red stars, is the binned analog of the
first point, and was observed in the fully binned case in
Fig. 2).

• From the lower plots, we conclude that the bias in the
unbinned ML fit is the same as the bias in the χ2 fit.

• The inference uncertainty and bias for the unbinned
unfolding is better than the for the binned unfolding with
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Fig. 7 Inference uncertainty (top) and bias (bottom) on the model
mean (left) and variance (right) as a function of the detector resolu-
tion. Unbinned unfolding (UBU) is done two ways: with the KDE and
with Neural Networks (NN) in OmniFold. The inference is done two

ways: an unbinned ML fit and a binned χ2 fit using the full covariance
matrix for the fit histogram. The blue band centered on the true value
shows ± the RMS inference uncertainty from the unbinned unfolding
unbinned ML fit to provide a scale reference

IBU for the binning and method hyperparameter choices
that produced the results shown in Fig. 6. This suggests
that some useful information may be lost when the data
are binned before unfolding.

The results from the χ2 fits are as expected. When cor-
relations from the unfolding are properly included by using

the full covariance matrix for the fit histogram, the asymp-
totic uncertainties are correct. When these correlations are
ignored, the asymptotic uncertainties are incorrect. Corre-
lations in the unbinned unfolding are negligible when the
detector resolution is perfect and, in this case, the asymp-
totic uncertainties in the unbinned ML fit are correct because
the event weights from the unfolding are uncorrelated.
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Fig. 8 Scatter plots of the RMS vs average asymptotic inference uncer-
tainty for unbinned unfolding using NNs in OmniFold in 1D, 2D, 4D,
and 6D. Each model parameter is represented by a point (N means in N
dimensions and N (N + 1)/2 covariance elements). The vertical coor-
dinate is the RMS of the fitted model parameter from 500 experiments,

while the horizontal coordinate is the average asymptotic uncertainty
from an unbinned ML fit. The dashed gray line has a slope of 1. The
slope of the solid green line is set to the average of the RMS/asymptotic
uncertainty ratio

Fig. 9 Scatter plots of the RMS vs average asymptotic inference uncer-
tainty for unbinned unfolding using NNs in OmniFold in 6D with vary-
ing amounts of detector resolution smearing. The detector resolution
from the 6D study shown in Fig. 8 is scaled by the following factors:
0, 1.0, 2.0, and 3.0. Each model parameter is represented by a point.

The vertical coordinate is the RMS of the fitted model parameter from
500 experiments, while the horizontal coordinate is the average asymp-
totic uncertainty from an unbinned ML fit. The dashed gray line has a
slope of 1. The slope of the solid green line is set to the average of the
RMS/asymptotic uncertainty ratio

4.4 Parameter estimation in 1D with a NN

Figure 7 has a similar setup as Fig. 6, but compares the KDE
and NN approaches within OmniFold. The trends with the
NN are similar.

We found that the activation function can affect the degree
of regularization in the NN output, which also affects the
strength and distance scale of the weight correlations in the
OmniFold output. Interestingly, we found that the inference
uncertainty is insensitive to these correlations. This is dis-
cussed in more detail in Appendix B.

4.5 Parameter estimation beyond 1D

In dimensions higher than 2 or 3, unbinned unfolding
becomes the only practical method. We investigate higher-
dimensional feature spaces using a multivariate normal dis-

tribution as our ‘physics’ model. The covariance parameters
of the model are chosen such that the densities do not factor-
ize in the variables spanning the feature space. The mean and
sigma values were chosen to include a range of mean values
within [−1, 1], sigma values within [0.6, 1.5], and non-trivial
off-diagonal correlation coefficients within [−0.7,0.7]. The
Monte Carlo gen particle and pseudo data true values differ
by small amounts, so that the unfolding task is non trivial. The
chosen values give an invertible model multivariate Gaussian
covariance matrix. We model the detector resolution with a
Gaussian smearing that is separate and uncorrelated for each
feature dimension. The model and resolution parameters used
are given in Appendix A.

Figure 8 compares the inference precision as estimated
with the RMS of the 500 pseudo datasets with the asymptotic
uncertainty from an unbinned ML fit, using Eq. (1.1) for each
model parameter for studies in 1D, 2D, 4D, and 6D feature
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space. The detector resolution is set to nominal values that
are kept the same when additional feature dimensions are
added. In each study, the RMS uncertainty is higher than
the asymptotic uncertainty. The RMS/asymptotic uncertainty
ratio appears to be the roughly the same for all of the model
parameters within each plot with the ratio ranging from 1.18
to 1.28.

Figure 9 compares four studies in the 6D feature space
with varying detector resolution. The results are qualitatively
similar to the 1D case. The RMS/asymptotic uncertainty
ratio is consistent with 1 for perfect detector resolution and
increases gradually as the detector smearing increases.

5 Conclusions and outlook

Simulation-based inference is enabling a new class of anal-
yses that make use of all the available information without
first (lossily) compressing the data into a small number of
summary statistics that are discretized via histograms. New
tools have enabled unbinned and high-dimensional inference
of parameters and unbinned and high-dimensional inference
of differential cross sections. In this paper, we explore the
fusion of these two approaches: unbinned parameter estima-
tion from unbinned unfolded results.

We used a Gaussian setup, where the simulation/forward
model of the data is known analytically and pseudodata were
unfolded using the OmniFold unbinned unfolding method.
We identified a number of critical observations: (1) there can
be an advantage of unbinned unfolding for parameter estima-
tion even if the inference is performed using histograms. This
matches with our intuition that it is best to reduce the informa-
tion as late as possible in the statistical analysis. (2) Ignoring
correlations – as is currently required in the unbinned infer-
ence case – seems to have little or no effect on the accuracy
and precision of the fit as long as numerical methods are used
for the statistical analysis. This does not seem to be a formal
consequence of the setup and may be a feature of the Gaussian
example. The motivating question of the entire study led us to
(3). Asymptotic formulae are not valid when correlations are
ignored and the reported uncertainties can be significantly
underestimated without computing them numerically.

With a growing number of unbinned cross section mea-
surements, it is critical to build a robust statistical and soft-
ware suite for analyzing these data in the context of physics
models. Our main recommendation is to avoid asymptotic
formulae for unbinned inference of unbinned measurements
until the statistical formalism can be extended to include
event-to-event correlations. Valid inference uncertainties can
still be obtained, when analyzing the output of unbinned
unfolding with event weight correlations, if they are eval-
uated numerically using the bootstrap method. An important
area of future research will be to directly study the interplay

between machine learning regularization and the impact on
downstream inference. In this work, we have focused on the
case where the ‘physics’ model of the data is known; in the
most general case, this model is not known explicitly and
one must also use machine learning to approximate it from
simulations. Studying the end-to-end approach may reveal
connections between the (implicit) regularization used by
the machine learning models at both steps. While there is
still significant research required to optimally employ these
methods, current results can already be used with care. The
scientific gains from these approaches hold immense poten-
tial for particle physics and beyond.
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Appendix A: Parameter values for the 2D, 4D, and 6D
studies

This appendix gives the parameter values used in the multi-
dimensional studies. The model parameters are the mean μ,
width σ , and correlation coefficients ρ for the multivariate
normal distribution. Values are given for the Monte Carlo
(MC) and the true values used to generate the pseudo data.
The detector resolution is σdet.
Parameters for the 2D study.

μMC =
(

0.0
1.0

)
μtrue =

(
0.2
0.8

)
σMC =

(
1.0
1.5

)

σtrue =
(

0.9
1.3

)
σdet =

(
0.5
0.8

)
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ρMC =
(

1.0 −0.6
−0.6 1.0

)
ρtrue =

(
1.0 −0.6

−0.6 1.0

)

Parameters for the 4D study.

μMC =

⎛

⎜⎜⎝

1.0
0.0

−0.5
0.5

⎞

⎟⎟⎠ μtrue =

⎛

⎜⎜⎝

0.8
0.1

−0.6
0.7

⎞

⎟⎟⎠ σMC =

⎛

⎜⎜⎝

1.0
0.7
1.1
0.8

⎞

⎟⎟⎠

σtrue =

⎛

⎜⎜⎝

0.8
0.6
1.0
0.6

⎞

⎟⎟⎠ σdet =

⎛

⎜⎜⎝

0.4
0.5
0.6
0.3

⎞

⎟⎟⎠

ρMC =

⎛

⎜⎜⎝

1.0 0.1 −0.2 0.3
0.1 1.0 0.0 0.1

−0.2 0.0 1.0 0.7
0.3 0.1 0.7 1.0

⎞

⎟⎟⎠

ρtrue =

⎛

⎜⎜⎝

1.0 0.0 −0.3 0.4
0.0 1.0 0.2 0.0

−0.3 0.2 1.0 0.5
0.4 0.0 0.5 1.0

⎞

⎟⎟⎠

Parameters for the 6D study.

μMC =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.0
0.0

−0.5
0.5

−1.0
0.3

⎞

⎟⎟⎟⎟⎟⎟⎠
μtrue =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.8
0.1

−0.6
0.7

−0.8
0.1

⎞

⎟⎟⎟⎟⎟⎟⎠
σMC =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.0
0.7
1.1
0.8
1.2
1.4

⎞

⎟⎟⎟⎟⎟⎟⎠

σtrue =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.8
0.6
1.0
0.6
1.0
1.1

⎞

⎟⎟⎟⎟⎟⎟⎠
σdet =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.4
0.5
0.6
0.3
0.4
0.4

⎞

⎟⎟⎟⎟⎟⎟⎠

ρMC =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.0 0.1 0.2 −0.3 0.0 0.0
0.1 1.0 0.0 −0.2 0.3 0.1
0.2 0.0 1.0 0.1 −0.2 0.3

−0.3 −0.2 0.1 1.0 0.1 0.0
0.0 0.3 −0.2 0.1 1.0 0.7
0.0 0.1 0.3 0.0 0.7 1.0

⎞

⎟⎟⎟⎟⎟⎟⎠

ρtrue =

⎛

⎜⎜⎜⎜⎜⎜⎝

1.0 0.0 0.2 −0.2 0.1 0.0
0.0 1.0 0.0 −0.1 0.2 0.0
0.2 0.0 1.0 0.0 −0.3 0.4

−0.2 −0.1 0.0 1.0 0.2 0.0
0.0 0.2 −0.3 0.2 1.0 0.5
0.0 0.0 0.4 0.0 0.5 1.0

⎞

⎟⎟⎟⎟⎟⎟⎠

AppendixB:Activation functiondependenceof event cor-
relations

We have found that the event weight correlations in the
unfolding output are sensitive to the activation functions used
in the NN model. Figure 10 shows the average event weight
correlation as a function of distance in feature space for our
1D study with a detector smearing of 0.5 for the KDE com-
pared to three different choices for the NN activation func-

Fig. 10 Average weight correlation between two events as a function of the absolute distance between the events in the observable. The results
for the KDE are compared with three different NN activation function choices: relu, gelu with β = 1, and gelu with β = 4
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Fig. 11 Graphs of the event weight function from the unfolding com-
pared with the true event weight function. The columns show different
options within OmniFold: left is the KDE, center left is NNs with relu
activation, center right is NNs with gelu activation with β = 4, and

right is NNs with gelu activation with β = 1. Each row is the results
for a particular test sample and the columns within a row all use the
same test sample

tion: relu, gelu with β = 1, and gelu with β = 4. We
find that gelu with β = 1, which is the standard version of
gelu, introduces the most regularization and has the longest
distance scale for the correlations. If the transition from flat
to a slope of 1 is shortened withingelu by setting β = 4, the
pattern of event weight correlations is quite similar to relu
and this is similar to the results from the KDE.

Figure 11 shows graphs of the event weight function from
the unfolding compared with the true event weight function.
The columns compare the KDE with the three NN activation
function choices. Each row shows the results for unfolding
a particular test dataset. The KDE has the least amount of
regularization of the weight function. Statistical fluctuations
in the tails are visible. Therelu activation allows for sharper
kinks in the weight function and tends to converge to a linear
function on the right side, where the statistics are lower. The
gelu with β = 1 is much more regularized than gelu with

β = 4, which is closest to a smoothed version of the KDE
weight function.

The true weight function is smooth and slowly varying, so
a high degree of regularization is not necessarily a problem
for our particular toy physics model. The inference results
from the unfolding are given for each plot in Fig. 11. Even
though the weight functions differ substantially, they all give
very similar values in the inference of the model parameters.
After seeing the graphs forgeluwith β = 1 (right column in
Fig. 11), we expected it to have better precision, but that’s not
the case. The KDE and all three NN activation choices all give
inference uncertainties of around 0.010 for the model μ and
0.014 for the model σ 2. Note that the inference uncertainty
scale is quite small compared to the horizontal axis range
shown in Fig. 11.
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Appendix C: Ensembling and inference resolution from
NN model parameter initialization

The converged state of the unbinned unfolding when using
NNs within OmniFold has some dependence on the random
initialization of the NN model weights. This impacts the reso-
lution of the unfolding and downstream inference. However,
this effect can be removed by averaging the output of several

runs of the full unfolding, where each run starts with a differ-
ent set of random initial NN model weights. This averaging is
known as ensembling. Averaging the final unfolding weights
is known as parallel ensembling [46]. Figure 12 shows the
inference uncertainty on the model mean and model variance
for our 1D study with detector smearing of 0.5 as a function of
the number of runs used in the ensemble average. Our inter-
pretation of these results is that an ensemble of 10 runs is

Fig. 12 Inference uncertainty on the model parameters for the 1D study as a function of the number of runs in the ensemble average. A detector
smearing of 0.5 was used

Fig. 13 Inference uncertainty on the model parameters for our 1D
study as a function of detector smearing. The orange circles are a mea-
sure of the contribution from the initialization of the random NN weights
σp . The blue squares show the resolution without ensembling σ1. The

Green triangles show the resolution for a 10-run ensemble average σ10.

The quadrature difference
√

σ 2
1 − σ 2

p agrees fairly well with the 10-run

ensemble average
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sufficient to remove the parameter initialization contribution
to the unfolding resolution.

Figure 13 shows the components of the overall inference
uncertainty as a function of the level of detector smearing.
The orange circles show the resolution, from the RMS of
the inference distribution, when the inference is done 200
times on the same dataset with different initial random NN
model weights in a single run. This is a direct measure of
the size of the parameter initialization resolution contribu-
tion σp. The blue squares show the results for unfolding 200
independent datasets without ensemblingσ1. The green trian-
gles show the results for unfolding the same 200 independent
datasets, where the ensemble average of 10 runs is used σ10.
The red diamonds show the quadrature difference of the 1-

run minus the parameter initialization resolution
√

σ 2
1 − σ 2

p ,
which agrees fairly well with the 10-run ensemble average
resolution σ10, as expected.
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