Dr. Krish Desai

krishdesai7@gmail.com

www.desai.ml

LINKEDIN

(203) 909-9893

Ph.D. Candidate in Physics specializing in AI/ML techniques, statistical modelling, and algorithm development for analyzing complex, noisy, high-dimensional datasets. Published researcher in top venues (NeurIPS, Physical Review D) with applied experience at Lawrence Berkeley National Lab, Microsoft Research and Bridgewater Associates, consistently delivering high-impact results through rigorous quantitative methods and creative problem-solving. Passionate about leveraging quantitative skills and innovative ML methods, mathematical modeling, and high-performance computing to answer impactful questions.

EDUCATION

UC Berkeley: PhD Physics (3.81GPA) August 2020 – May 2025

Thesis: Machine learning methods for particle collider data. (Advisor: Dr. Benjamin Nachman.)

Yale University, BS & MS with Distinction (3.85 GPA) August 2017 – May 2020

M.S. Mathematics.

B.S. Mathematics (Intensive) with Distinction, Physics (Intensive) with Distinction.

CORE COMPETENCIES & SKILLS

- AI/ML: Deep learning, generative models, Bayesian networks, statistical modelling, algorithm design, deconvolution & denoising.
- Programming & Tools: Python, TensorFlow, PyTorch, Keras, Pandas, Scikit-learn, NumPy, SciPy, Git, C, Mathematica.
- Research Methods: Experimental design, statistical analysis, data visualization, algorithmic optimization, quantitative analysis.
- Test Scores: ACT: 36/36, SAT II: Physics 800/800, Math II 800/800, Chemistry 800/800, GRE: Quant 169/170, Verbal: 167/170.

PROFESSIONAL EXPERIENCE

Lawrence Berkeley National Lab

Machine Learning Researcher

October 2020 – Present

- Invented novel ML architectures for high energy physics data analysis, resulting in 6 peer reviewed publications (NeurIPS 2024 × 2, 2022, 2021), Physical Review D (2022, 2024). (<u>GitHub Repository</u>).
- Developed cutting edge deconvolution techniques to recover particle physics signals from distorted, noisy data.
- Led interdisciplinary collaborations to implement and optimize high performance algorithms to process petabyte-scale datasets.

Bridgewater Associates

Investment Analyst Intern

June 2023 – August 2023

- Engineered Bayesian Hierarchical Networks to predict liquidity & transaction costs, updating economic priors with market data.
- Developed systematic trading strategies to optimally execute alpha signals through multi-factor modelling.
- Implemented and optimized trading strategies, translating complex market analyses into actionable, high-value portfolios.
- Formulated strategic investment input to some of the world's most sophisticated capital pools, impacting high level decision-making

Microsoft Research

PhD Research Intern

May 2022 – August 2022

- Collaborated directly with Jaron Lanier (Chief Unifying Scientist) on "Non-local Field Theory from Matrix Models" (arXiv:2206.13458), developing mathematical methods that bridge discrete and continuous structures.
- Formulated analytical approaches using stochastic calculus and operator theory to establish quantitative relationships between conventional local interactions and emergent non-local dynamics.
- Implemented numerical simulations to validate theoretical predictions about high-dimensional mathematical structures with applications to optimization problems.
- Contributions acknowledged in arXiv:2206.13458 for providing significant mathematical formalism and technical implementation.

University of California, Berkeley

Associate Instructor

August 2020 - December 2024

- Head Associate Instructor for Introductory Physics, managing 12 teaching assistants and 600+ students.
- Associate Instructor: Introduction to Mathematical Physics, Data Science Applications in Physics, Introduction to Computational Techniques in Physics, Physics for Scientists and Engineers.
- Designed, developed, and delivered computational modules integrating data science methods with physics concepts.

Purple Gaze Inc.

Software Developer Intern

May 2020 - August 2020

- Engineered AI-driven glint detection algorithms for eye-tracking software, improving detection accuracy.
- Developed production-quality code in Python and C++ for real-time image processing applications.
- Collaborated in an agile startup environment, meeting tight deadlines while maintaining high-quality standards.

RESEARCH & PUBLICATIONS

RESEARCH & PUBLICATIONS		
Journal Articles		
Unbinned Inference with Correlated Events	arXiv:2504.14072	
Moment Unfolding	Physical Review D (GitHub Repository)	2024
SymmetryGAN	Physical Review D (GitHub Repository)	2022
Closed Geodesics on Flat Surfaces	Journal of Geometry	2021
Reweighting Adversarial Networks		In preparation
Conference proceedings		
Multidimensional Deconvolution with Profili	ng <u>NeurIPS</u>	2024
Neural Posterior Unfolding	<u>NeurIPS</u>	2024
Deconvolving Detector Effects for Distribution	on Moments NeurIPS	2022
Symmetry Discovery with Deep Learning	<u>NeurIPS</u>	2021
Theses		
Padé Approximants & Anharmonic Oscillator	rs .	Yale University MS Mathematics
Supersymmetry and Morse Theory	`	Yale University BS Mathematics (Intensive)
A Review of String Theory Methods		Yale University BS Physics (Intensive)
Machine Learning Methods for Cross Section	Measurements	UC Berkeley PhD Physics
SELECTED TALKS & CONFERE	NCES	
NeurIPS	Neural Posterior Unfolding	December 2024, Vancouver, Canada
NeurIPS M	fultidimensional Deconvolution with Profiling	December 2024, Vancouver, Canada
CERN	CMS Seminar	June 2024, Geneva, Switzerland
PHY-STAT Unfolding Conference	Moment Unfolding	June 2024, Paris, France
NeurIPS	Deconvolving Detector Effects	December 2022, New Orleans, LA
Machine Learning for Jets	Moment Unfolding with Deep Learning	November 2022, New Brunswick, NJ
Korea Institute for Advanced Study	High Energy Physics Seminar	June 2022, Seoul, South Korea
American Physical Society	Moment Unfolding using Deep Learning	April 2022, New York NY
NeurIPS	Symmetry Discovery with Deep Learning	November 2021, Virtual
Perceive Deep Learning AI Conference	Symmetry Discovery with Deep Learning	October 2021, Virtual
American Physical Society	Symmetry Discovery using Machine Learning	April 2021, Virtual
SERVICE & LEADERSHIP		
Journal of High Energy Physics	Invited journal peer reviewer	2025
NeurIPS	Invited conference peer reviewer	2022, 2024
UC Berkeley Graduate Assembly Camp	nus Affairs Vice President, Rules Officer, Physi	<i>cs Delegate</i> 2021 – 2024
UC Berkeley Physics Faculty Search	Graduate Student Representative	2020 - 2023
Yale Political Union	Vice President	2019
SELECTED FELLOWSHIPS & AWA	RDS	
Election to Sigma Xi Scie	ntific Research Honor Society, Full Membersh	<i>uip</i> 2025
Election to Sigma Pi Sigma	Physics Honor Society, Lifetime Membership	2021
	e most outstanding graduating senior in physic	es 2020
George J. Schulz Summer Fellowship	Excellence in physical science research	2020
Howard Robert Topol Fellowship	Excellence in physical science research	2019
James A. Helzer Fellowship	Excellence in physical science research	2018
SUMRY Fellowship	For mathematics research	2019
Yale First-Year Research Fellowship	For research in the physical sciences	2018
Benjamin F. Barge Prize Mo	st outstanding first-year student in mathematic	cs 2018