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ABSTRACT: Modern machine learning has enabled parameter inference from event-level
data without the need to first summarize all events with a histogram. All of these unbinned
inference methods make use of the fact that the events are statistically independent so
that the log likelihood is a sum over events. However, this assumption is not valid for
unbinned inference on unfolded data, where the deconvolution process induces a correlation
between events. We explore the impact of event correlations on downstream inference tasks
in the context of the OmniFold unbinned unfolding method. We find that uncertainties
may be significantly underestimated when event correlations are excluded from uncertainty
quantification.


mailto:krish.desai@berkeley.edu
mailto:owenl@ucr.edu
mailto:bpnachman@lbl.gov

Contents

1 Introduction 1
2 Methodology 3
2.1 Unbinned Unfolding 3
2.2  Unbinned Inference 4
2.3 Implementation 4
3 Setup 5
3.1 Data 5
3.2 Neural Networks 5
4 Numerical Results 7
4.1 Binned Baseline 7
4.1.1 Binned Unfolding with IBU and Inference 7
4.2 Event-by-event Correlations 8
4.3 Parameter Estimation in 1D with a KDE 9
4.4 Parameter Estimation in 1D with a NN 13
4.5 Parameter Estimation beyond 1D 14
5 Conclusions and Outlook 16
A Parameter values for the 2D, 4D, and 6D studies 17
B Activation function dependence of event correlations 17
C Ensembling and inference resolution from NN model parameter initial-
ization 19

1 Introduction

Accurate and precise parameter estimation is a central task in high-energy physics data
analysis. Traditional approaches usually involve summarizing high-dimensional, event-level
data into a small number of observables, whose differential cross sections are approximated
with histograms. Best fit parameters and confidence intervals are then extracted using
first-principles-based or Monte Carlo simulation-based templates using binned likelihood
approaches. While effective, these methods can suffer from significant information loss
and biases due to the dimensionality reduction and the binning. Furthermore, classical
methods cannot be employed to study the multidifferential cross section of many observ-
ables simultaneously due to the increasing difficulty of binning effectively as the number of



dimensions increases. Even if a simultaneous binned measurement was performed, it is not
feasible to extract the differential cross section of lower-dimensional observables computed
from the higher-dimensional phase space.

The advent of modern machine learning techniques has enabled unbinned inference
methods that operate directly on event-level data without the need for dimensionality
reduction or histogramming [1]. These methods exploit the full information content of
the data, leading to improved sensitivity and reduced biases in parameter estimation.
A key assumption underlying these unbinned methods is the statistical independence of
events, which allows the joint likelihood to be expressed as a product over individual event
likelihoods, or equivalently, the log-likelihood as a sum over events:

N
In£(0) = Inp(x;|0), (1.1)
=1

where x; denotes the observed data for event i,  represents the parameters of interest, and
p(z; | 0) is the probability density function for event i given 6. The widely-used asymptotic
formulae [2] for likelihood-based statistics apply also the unbinned case and can significantly
accelerate the calculation of confidence intervals and p-values.

Such methods have been effectively applied to detector-level data [3], where the as-
sumption of the statistical independence of events holds. However, this assumption of event
independence does not hold in the context of unfolded data. Unfolding is the process of
statistically removing detector distortions to produce cross-section measurements at the
particle-level. These results are independent of the detector and can thus be analyzed out-
side of experimental collaborations. Unfolding is an ill-posed inverse problem that requires
regularization techniques [4-7] and introduces correlations between events due to the de-
convolution process. These correlations violate the independence assumption. Nonetheless,
unfolded data have been used extensively to measure fundamental parameters, fit parton
distribution functions [8], tune parton shower Monte Carlo simulators [9], and search for
physics beyond the Standard Model [10]. All of these studies use binned data, where cor-
relations can be properly accounted with a covariance matrix. The usual Gaussian limit of
Eq. 1.1 results in a y? test statistic. With bin-by-bin correlations, the statistic most often
used is

() = (D = P(9)) =71 (D — P(0)), (1.2)

where D is the vector of unfolded data counts, P(f) is the vector of predicted counts
from the model at parameters 8, and ¥ is the covariance matrix encoding statistical and
systematic uncertainties. As with Eq. 1.1, asymptotic formulae apply to Eq. 1.2 for deriving
confidence intervals and p-values.

Recent innovations from machine learning have enabled unbinned unfolding [11-13].
These methods are based on discriminative [14-16] or generative methods [17-28] and
there are now also experimental results with some of these approaches [29-38]. One can
bin the unbinned results and use Eq. 1.2 for parameter estimation, but we are not aware
of an analog to Eq. 1.1 that accounts for correlations. The goal of this paper is explore
how unbinned unfolded results can be used for parameter estimation. While there are



a growing number of unbinned experimental results, the methods and publications are
sufficiently new that there are currently no parameter extractions using these data. Our
study will establish some best practices for using unbinned unfolded data for parameter
estimation as well as new research questions for improving these protocols in the future.

In particular, we are interested in a number of questions: (1) is there an advantage in
precision for binning after the unfolding instead of before? (2) is there any effect on the
inference precision if correlations are ignored when creating the test statistic? and (3) if we
ignore correlations and use Eq. 1.1 for the unbinned data, are the asymptotic uncertainties
still valid? For (1), we will compare classical binned unfolding with an unbinned approach
that is binned post-hoc for inference. To address (2), we have to use binned inference since
we do not know the unbinned analog of Eq. 1.2. Lastly, we will compare asymptotic and
numerical uncertainties to answer (3). Reference [14] found that binning before or after
unfolding gave similar accuracy, but a study of precision for downstream parameter esti-
mation has not yet been addressed. Since the detector distortions are treated unbinned,
we hypothesized that unbinned unfolding could be more precise than traditional, binned
unfolding. Furthermore, we expected that using correlations in the test statistic would
lead to more precise inference than ignoring correlations in the test statistic. Lastly, we
hypothesized that the asymptotic formulae would not give correct uncertainties when cor-
relations are ignored (and correct ones when they are included when possible). For a series
of Gaussian examples, we will confront each of these hypotheses with empirical evidence
in order to address our main questions above.

The remainder of this paper is organized as follows. In Sec. 2, we detail the method-
ology of unbinned unfolding and inference. Section 3 outlines the experimental setup,
including the construction of simulated datasets. Numerical results for one and many
dimensions are presented in Sec. 4. The paper ends with conclusions and outlook in Sec. 5.

2 Methodology

2.1 Unbinned Unfolding

We studied unbinned unfolding using the OmniFold [14, 15] method, as it is the one that has
been used in all existing unbinned measurements. The task is to find the true distribution
given observed data from a detector that includes non-negligible resolution or smearing
effects. An essential requirement is to have an accurate detector simulation that maps
the generated particle level observables (gen particle) to the output of the detector (sim
particle). The gen-particle distribution in the Monte Carlo is, in general, not the true
distribution, since the true distribution is what we would like to measure using the data
and it is not known in advance. The OmniFold method finds the Monte Carlo event weights
necessary to reweight the gen-particle distribution to the true distribution using an iterative
process.

Each OmniFold iteration consists of two steps. The first step is to find the Monte Carlo
event (“pull”) weights that will make the sim-particle distribution match the detector data.
The desired unfolding output is a function that gives an event weight from gen-particle
inputs, not sim-particle inputs. The second step of OmniFold provides this by finding



Monte Carlo event (“push”) weights that will make the gen-particle distribution match
the pull-weighted gen-particle distribution. The push-weighted Monte Carlo sim-particle
distribution can then be compared to the detector data distribution. If they agree, the task
is complete. If they disagree, the next iteration repeats the procedure starting with the
push-weighted Monte Carlo sample, where the product of the push weights of all previous
iterations are retained as event weights. The step weights in each iteration become closer
to one as the process converges, usually after about five iterations. The final output is the
weighted Monte Carlo sample, where each event is weighted by the product of the push
weights for all of the iterations.

2.2 Unbinned Inference

Inference of model parameters from unbinned data is commonly done using a maximum
likelihood fit. Asymptotic uncertainties on the model parameters are determined from
finding the parameter values that give a change in log likelihood of 0.5, corresponding
to one standard deviation in the Gaussian approximation (e.g. the likelihood is locally
quadratic near the maximum). Methods exist [39] for taking into account event weights in
the evaluation of the asymptotic uncertainties if the weights are statistically independent.
Reference [39] suggests a method for taking into account weight correlations if they can
be parameterized. For our case, there is no simple parameterization, but we leave further
explorations of related strategies to future work. In our study, we fit the output of the
OmniFold unfolding, which is the weighted Monte Carlo gen-particle distribution. The
OmniFold event weights are not statistically independent. We study how these weight
correlations impact the evaluation of the asymptotic uncertainties from the maximum like-
lihood fit.

2.3 Implementation

We consider both a one dimensional and multi-dimensional inference task described in the
next section. For the one-dimensional study, we use kernel density estimation (KDE) with
a uniform kernel over a fixed radius to estimate the probability densities that are used
within OmniFold. The estimated probability density function (PDF) p at point x in the
feature space is proportional to the number of points within dx of x. The pull weight in
step 1 for a Monte Carlo event at x4 is wi = pg(xs)/ps(xs), where pg and p, are the PDFs
for the data and sim-particle Monte Carlo, respectively. Likewise, the push weight for step
2 is wo = py(zg,w1)/pe(z4), Where py(x4,wr) is the gen-particle PDF evaluated with the
weights w from step 1.

In higher dimensions, we instead train neural network binary classifiers to find the
weight functions used in OmniFold. In step 1, a classifier is trained to distinguish data from
sim-particle Monte Carlo and the pull weight is wq = ¢1(2zs)/(1—c1(zs)), where ¢1(x5) is the
classifier output, which is the probability that an event at z is from the data distribution.
In step 2, another classifier is trained to distinguish gen-particle Monte Carlo weighted by
w; from gen-particle Monte Carlo and the push weight is wo = ca(xg)/(1 — c2(xy)), where
ca(xg) is the classifier output.



3 Setup

To demonstrate parameter estimation in addition to unfolding, we need data generated from
a model with a known parametric family. In order to run enough (pseudo)experiments to
test the coverage of the inference (in addition to research and development), we also need
to be able to generate many examples from the model. Therefore, we focus on Gaussian
examples. Many physics problems of interest share many features with this setup; at the
same time, we expect the sign and magnitude of the features we observe to be problem-
specific.

3.1 Data

In our one-dimensional studies, the true model is a Gaussian with parameters piye = 0.2
and 02, = 0.81. The parameter values used in the multidimensional studies are given
in Appendix A. 10,000 samples of the “truth” dataset are generated. A larger Monte
Carlo (MC) sample of size 100,000 is also generated from a Gaussian with mean 0.0 and
variance 1.0. In traditional unfolding, this MC dataset would be the one to derive the
response matrix. It also serves as the initialization for the unfolded result. Both the
true and ‘particle-level’ MC sample are passed through the same detector distortions: a
Gaussian smearing with mean zero and various resolutions ranging from 0 to 0.75. For
each parameter set, datasets are generated and binned into a fixed number of bins (15 bins
spanning the range [—3,4]). In the unbinned cases, the result is unbinned and presented
as a histogram for illustration and comparison purposes.

For each parameter set that we study, we generate 500 statistically independent toy
datasets where the number of events in each dataset is chosen from a Poisson distribution
with a mean of 10k. Figure 1 shows example distributions. In a real application, where there
is only one dataset being analyzed, the bootstrapping method could be used to determine
the statistical uncertainties. We have verified that bootstrapping and independent toy
datasets give the same results for the statistical uncertainties, as evaluated by the RMS of

the inference results of 500 datasets.

3.2 Neural Networks

We use the Tensorflow 2.17.0 [40] and Keras 3.4.1 frameworks to implement and train our
Neural Networks (NNs). The NN consists of three fully connected layers with 50 nodes per
layer. In our nominal results, we use a modified version of the gelu [41] activation function,
though we have also explored using relu activation. The gelu function is modified as

GELU(z) ~ 0.5 2 (1 + tanh [B (z + 0.0447152°)]) ,

where [ is a parameter that tunes the distance scale of the transition from flat to a slope of
1. With 8 = 1, the function is the original gelu, which gives a high degree of regularization
and a larger distance scale for the output event weight correlations. With 8 = 4, the
regularization is more modest and the correlations are closer to the output with relu,
which is the asymptotic case for large 5. More details on our choice of activation function
are given in Appendix B. The NNs are trained using the Adam optimizer [42] with a learning
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Figure 1. Histograms showing the datasets from the one-dimensional study. The distributions on
the left show the true distribution of the observable compared with the gen-particle distribution of
the Monte Carlo. The center histograms show a sample detector-level distribution of the observable
compared with the sim-particle distribution of the Monte Carlo. The right histogram shows the
resolution function. For these histograms, we used 31 bins in the range [-5, 5].

rate of 5 x 10™4. The loss function is binary cross entropy. Data are equally divided into
train and test samples for monitoring. The NNs are trained for 50 epochs with a batch
size of 10*. We remove the output dependence on the random initial NN model weights,
which are set with the GolrotUniform method [43], by averaging the final event weights of
10 runs of the full OmniFold procedure, each with different random initial model weights.
This effects of this ensembling [44] are described in more detail in Appendix C.

These hyperparameter values were chosen to give stable results with reasonable con-
vergence. When exploring the hyperparameter space, we monitored several aspects of the
unfolding, including;:

e The mean and RMS of the step 1 and step 2 weight distributions for each OmniFold
iteration. Satisfactory convergence is indicated by a mean weight of 1 and a narrow
weight distribution.

e The residuals of the unfolded distribution, compared to the known true distribution
after each iteration for both the gen-particle and sim-particle distributions in all

feature dimensions.

e The mean and width of the distribution of the difference between the OmniFold event
weight and the known true event weight. Since the multivariate normal parameters
are known in our study for both the Monte Carlo and true distribution, the true event
weight can be calculated for each event. For the 1D study, this can be visualized
as a simple graph. Example graphs of the event weight function can be found in
Appendix B.

Examples of the monitoring output can be found in in the code repository for this paper.
As an alternative to NNs in the one-dimensional studies, we also use KDEs with a
fixed kernel of fixed radius 0.1.



4 Numerical Results

We start with the one-dimensional example and first establish a binned baseline. Then,
we consider unbinned case (also in one dimension), by first characterizing the size of the
correlations. Lastly, we explore the higher-dimensional inference task (which has no binned
baseline).

4.1 Binned Baseline
4.1.1 Binned Unfolding with IBU and Inference

For comparison with unbinned approaches, we establish a baseline in which the data are
binned from the start. We perform Iterative Bayesian Unfolding (IBU) [45] (also known
as Lucy-Richarson deconvolution [46, 47]) on the binned data, which is equivalent to Om-
niFold in the binned limit. The unfolded binned distribution is fit to a binned Gaussian
using a 2 statistic. In our inference, two variants are considered: one that employs the
full covariance matrix computed from 500 bootstrap replicas of the unfolded data, and
another that uses only the diagonal elements of the covariance matrix. The covariance is
estimated numerically from the ensemble of bootstrapped histograms. Parameter estima-
tion is performed by minimizing the x2, and the uncertainties are determined either by the
asymptotic change in x? (with Ax? = 1) or directly from the spread (standard deviation)
of the inferred parameters over the bootstrap ensemble.

This binned baseline procedure provides a benchmark against which the performance
of the unbinned unfolding (followed by either post-hoc binning for inference, or unbinned
inference) can be compared. For each parameter, two sets of asymptotic analyses are per-
formed: one obtained from the fit using the full covariance matrix (“cov”) and one using
only the diagonal approximation (“cov_diag”). We then calculate the mean asymptotic
error and its standard error (SEM) over the 500 replicas. In parallel, the numerical uncer-
tainty is obtained from the standard deviation of the best-fit parameter values across these
replicas.

First, we study the uncertainties in Figures 2a and 2b for the fitted mean (p) and
variance (02), respectively. As the detector resolution deteriorates, the overall uncertainty
increases, as expected. Notably, the numerical uncertainty matches the asymptotic error
using the full covariance matrix but is consistently smaller than the asymptotic error com-
puted using the diagonal covariance matrix, particularly for larger smearing values. This
indicates that the standard asymptotic error estimation using only the diagonal values
of the covariance matrix overestimates the true confidence intervals when the unfolding-
induced correlations become significant. These findings underscore the importance of incor-
porating the full covariance structure in the inference process when computing asymptotic
uncertainties.

Next, we quantify the bias in Figures 3a and 3b for the evolution of the mean best-fit
values of 1 and o2, respectively. In these plots, the data points represent the average best-
fit value at a given smearing, with vertical error bars corresponding to the SEM computed
from the 500 replicas. In addition, a horizontal dashed red line marks the true parameter
value. For both p (Figure 3a), and o2 (Figure 3b), the estimates computed both with and
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Figure 2. Mean asymptotic error versus detector smearing for the (a) Gaussian mean, u, and (b)
the variance o2 obtained from the full covariance analysis (green circles) and the diagonal covariance
approximation (pink squares). The green stars represent the standard deviation computed from
the spread of the best-fit values over 500 bootstrap replicas. Note that the numerical uncertainty
agrees well with the asymptotic error from the full covariance fit while the diagonal approximation
consistently overestimates the uncertainty at larger smearing values.

without using off-diagonal elements of the covariance matrix are similar. In particular, all
of the methods show nearly the same bias as a function of smearing, which is covered by the
uncertainty. The truth spectra are the same for each smearing and thus the uncertainties
are very correlated between points.

These results provide an important baseline: they demonstrate that with IBU and
conventional binned inference, the choice of covariance treatment can affect the inferred
uncertainties. In the subsequent sections, we compare these findings with those obtained
from the unbinned unfolding approach.

4.2 FEvent-by-event Correlations

For each parameter set, 500 statistically independent test datasets are unfolded without
binning using a fixed Monte Carlo sample. Each Monte Carlo event ¢ in the output of
unfolding dataset j is assigned a weight w;; by the unfolding algorithm. This allows us
to quantify the degree to which the event weights for a pair of Monte Carlo events are
correlated in the unfolding.

Figure 4 shows the average weight correlation between pairs of events as a function
of the distance between the pair of events in the observable for both the KDE and NN
approaches. The closer the events are to each other, the stronger the weights are correlated,
with a correlation of 1 at a distance of zero by construction. For perfect resolution, the
correlation quickly dies off as the distance between the events grows. In principle, in this
case, there should be no correlations between events and so any residual correlation is due
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Figure 3. The mean best-fit value of (a) u and (b) o2 is shown as a function of the detector
smearing, with error bars indicating the standard error of the mean (SEM) over 500 bootstrap test
datasets. Horizontal dashed red lines mark the true values of u = 0.2 and o2 = 0.81. Both fit
methods (full covariance and diagonal approximation) yield similar central values.

to smoothing in the KDE or NN. The KDE and NN differ in this case and in the other
cases in part because of their different implicit regularization. As the detector resolution
gets worse, the range of the correlation increases. The correlations themselves show a
wave-like pattern as nearby events are correlated and then anti-correlated beyond some
point in order to preserve the total cross section.

Another way to visualize the correlations is to bin the data and construct covariance
matrices. Figure 5 shows these matrices using histograms (40 bins from -4 to 4 in the
observable) of the unfolding output, where the covariance is calculated numerically from
the 500 test datasets for each resolution value. The results are consistent with the unbinned
evaluation of the weight correlations, shown in Figure 4, and additionally show that the
distance scale of the correlations does not depend strongly on the observable itself.

4.3 Parameter Estimation in 1D with a KDE

To investigate the impact of the event weight correlations in the unbinned unfolding output,
we compare three ways of performing the model parameter inference:

e An unbinned ML fit of the unbinned unfolding output, which is the weighted Monte
Carlo sample.

e A binned y? fit of the unfolding output that uses the full covariance matrix for the
histogram bins.

e A binned x? fit of the unfolding output that uses only the diagonal elements of the

covariance matrix for the histogram bins.
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Figure 4. Average weight correlation between two events as a function of the absolute distance
between the events in the observable. The four curves show different values for the detector reso-
lution. The top plots show unfolding with the KDE approach within OmniFold, while the bottom
plots show results from using NNs within OmniFold. The error bars show the RMS of the correla-
tion values.

For the binned x? fits, the covariance matrix of the histogram bins is evaluated numerically
from a set of histograms made from the 500 test datasets. The inference uncertainty is
determined for each model parameter from the RMS of the inference results for the 500 test
datasets. We consider this to be the most correct estimate of the inference uncertainty.
We compare this with the asymptotic uncertainties from the fits, determined from the
change in the model parameter that gives a change of 0.5 in the log likelihood for the ML
fit or a change of 1 in the y2. We also compare the unbinned unfolding with the results
of performing a binned unfolding using the Iterative Bayesian Unfolding (IBU) technique.
For all binned results, the Gaussian model predictions are integrated over the bins in order
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Figure 5. Covariance matrices of a histogram of the unfolding output for four detector resolution
values (0, 0.25, 0.50, 0.75). The top plots show unfolding with the KDE approach within OmniFold,
while the bottom plots show results from using NNs within OmniFold. The histogram has 40 bins
in the range [-4, 4].

to have histogram templates that are properly parameterized.

Figure 6 shows the inference uncertainty and bias as a function of the detector resolu-

tion. We draw the following conclusions from the results shown:

e The asymptotic uncertainties in the unbinned ML fit of the unbinned unfolding are

too low, do not depend on the detector resolution, and agree with the correct un-
certainty only for the perfect detector resolution case. The is can be seen in the top
plots, noting that the orange circles do not depend on the smearing and they disagree
with the orange stars (hidden under the red stars) for all levels of smearing except

no smearing.

e The asymptotic uncertainties in the binned y? fits agree with the correct uncertainty

when the full covariance matrix is used. Pictorially, blue circles agree with blue stars
(hidden under the red stars) and the green circles agree with the green stars.

e When the off-diagonal elements of the covariance matrix are set to zero in the x?

fit, the asymptotic uncertainties are incorrect. This corresponds to the difference
between the red circles and red stars, is the binned analog of the first point, and was
observed in the fully binned case in Fig. 2).

e From the lower plots, we conclude that the bias in the unbinned ML fit is the same

as the bias in the x? fit.

The results from the x? fits are as expected. When correlations from the unfolding are

properly included by using the full covariance matrix for the fit histogram, the asymptotic
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Figure 6. Inference uncertainty (top) and bias (bottom) on the model mean (left) and variance
(right) as a function of the detector resolution. Unbinned unfolding (UBU) is compared with the
results of binned Iterative Bayesian Unfolding (IBU). The inference is done three ways: an unbinned
ML fit, a binned x?2 fit using the full covariance matrix for the fit histogram, and a binned x? fit
using only the diagonal elements of the covariance matrix for the histogram. The blue band centered
on the true value shows + the RMS inference uncertainty from the unbinned unfolding unbinned
ML fit to provide a scale reference.

uncertainties are correct. When these correlations are ignored, the asymptotic uncertainties
are incorrect. Correlations in the unbinned unfolding are negligible when the detector
resolution is perfect and, in this case, the asymptotic uncertainties in the unbinned ML fit
are correct because the event weights from the unfolding are uncorrelated.
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4.4 Parameter Estimation in 1D with a NN

Figure 7 has a similar setup as Fig. 6, but compares the KDE and NN approaches within

OmniFold. The trends with the NN are similar.

We found that the activation function can affect the degree of regularization in the
NN output, which also affects the strength and distance scale of the weight correlations in
the OmniFold output. Interestingly, we found that the inference uncertainty is insensitive

to these correlations for our multivariate normal model.
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unbinned ML fit and a binned x?2 fit using the full covariance matrix for the fit histogram. The




4.5 Parameter Estimation beyond 1D

In dimensions higher than 2 or 3, unbinned unfolding becomes the only practical method.
We investigate higher-dimensional feature spaces using a multivariate normal distribution
as our ‘physics’ model. The covariance parameters of the model are non-zero for the
off diagonal elements. We model the detector resolution with a Gaussian smearing that is
separate and uncorrelated for each feature dimension. The model and resolution parameters
used are given in Appendix A.

Figure 8 compares the inference precision as estimated with the RMS of the 500 toy
datasets with the asymptotic uncertainty from an unbinned ML fit for each model param-
eter for studies in 1D, 2D, 4D, and 6D feature space. The detector resolution is set to
nominal values that are kept the same when additional feature dimensions are added. In
each study, the RMS uncertainty is higher than the asymptotic uncertainty. The RMS
/ asymptotic uncertainty ratio appears to be the roughly the same for all of the model
parameters within each plot with the ratio ranging from 1.18 to 1.28.
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Figure 8. Scatter plots of the RMS vs average asymptotic inference uncertainty for unbinned
unfolding using NNs in OmniFold in 1D, 2D, 4D, and 6D. Each model parameter is represented by
a point (N means in N dimensions and N (NN + 1)/2 covariance elements). The vertical coordinate
is the RMS of the fitted model parameter from 500 experiments, while the horizontal coordinate is
the average asymptotic uncertainty from an unbinned ML fit. The dashed gray line has a slope of
1. The slope of the solid green line is set to the average of the RMS / asymptotic uncertainty ratio.

Figure 9 compares four studies in the 6D feature space with varying detector resolution.
The results are qualitatively similar to the 1D case. The RMS / asymptotic uncertainty
ratio is consistent with 1 for perfect detector resolution and increases gradually as the

detector smearing increases.
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Figure 9. Scatter plots of the RMS vs average asymptotic inference uncertainty for unbinned
unfolding using NNs in OmniFold in 6D with varying amounts of detector resolution smearing. The
detector resolution from the 6D study shown in Figure 8 is scaled by the following factors: 0, 1.0,
2.0, and 3.0. Each model parameter is represented by a point. The vertical coordinate is the RMS
of the fitted model parameter from 500 experiments, while the horizontal coordinate is the average
asymptotic uncertainty from an unbinned ML fit. The dashed gray line has a slope of 1. The slope
of the solid green line is set to the average of the RMS / asymptotic uncertainty ratio.
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5 Conclusions and Outlook

Simulation-based inference is enabling a new class of analyses that make use of all the
available information without first (lossily) compressing the data into a small number of
summary statistics that are discretized via histograms. New tools have enabled unbinned
and high-dimensional inference of parameters and unbinned and high-dimensional inference
of differential cross sections. In this paper, we explore the fusion of these two approaches:
unbinned parameter estimation from unbinned unfolded results.

We used a Gaussian setup, where the simulation/forward model of the data is known
analytically and pseudodata were unfolded using the OmniFold unbinned unfolding method.
We identified a number of critical observations: (1) there can be an advantage of unbinned
unfolding for parameter estimation even if the inference is performed using histograms.
This matches with our intuition that it is best to reduce the information as late as pos-
sible in the statistical analysis. (2) Ignoring correlations — as is currently required in the
unbinned inference case — seems to have little or no effect on the accuracy and precision
of the fit as long as numerical methods are used for the statistical analysis. This does not
seem to be a formal consequence of the setup and may be a feature of the Gaussian ex-
ample. The motivating question of the entire study led us to (3) Asymptotic formulae are
not valid when correlations are ignored and the reported uncertainties can be significantly
underestimated without computing them numerically.

With a growing number of unbinned cross section measurements, it is critical to build
a robust statistical and software suite for analyzing these data in the context of physics
models. Our main recommendation is to avoid asymptotic formulae for unbinned inference
of unbinned measurements until the statistical formalism can be extended to include event-
to-event correlations. An important area of future research will be to directly study the
interplay between machine learning regularization and the impact on downstream inference.
In this work, we have focused on the case where the ‘physics’ model of the data is known;
in the most general case, this model is not known explicitly and one must also use machine
learning to approximate it from simulations. Studying the end-to-end approach may reveal
connections between the (implicit) regularization used by the machine learning models at
both steps. While there is still significant research required to optimally employ these
methods, current results can already be used with care. The scientific gains from these
approaches hold immense potential for particle physics and beyond.

Code availability

The code in this work can be found in: https://github.com/owen234/unbinned-inference-paper.
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A Parameter values for the 2D, 4D, and 6D studies

This appendix gives the parameter values used in the multidimensional studies. The model

parameters are the mean p, width o, and correlation coefficients p for the multivariate nor-

mal distribution. Values are given for the Monte Carlo (MC) and the true values used to

generate the toy data. The detector resolution is g get.

Parameters for the 2D study.
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We have found that the event weight correlations in the unfolding output are sensitive to

the activation functions used in the NN model. Figure 10 shows the average event weight
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correlation as a function of distance in feature space for our 1D study with a detector
smearing of 0.5 for the KDE compared to three different choices for the NN activation
function: relu, gelu with g = 1, and gelu with g = 4. We find that gelu with § = 1,
which is the standard version of gelu, introduces the most regularization and has the
longest distance scale for the correlations. If the transition from flat to a slope of 1 is
shortened within gelu by setting 5 = 4, the pattern of event weight correlations is quite
similar to relu and this is similar to the results from the KDE.

Figure 11 shows graphs of the event weight function from the unfolding compared
with the true event weight function. The columns compare the KDE with the three NN
activation function choices. Each row shows the results for unfolding a particular test
dataset. The KDE has the least amount of regularization of the weight function. Statistical
fluctuations in the tails are visible. The relu activation allows for sharper kinks in the
weight function and tends to converge to a linear function on the right side, where the
statistics are lower. The gelu with 8 = 1 is much more regularized than gelu with g = 4,
which is closest to a smoothed version of the KDE weight function.

The true weight function is smooth and slowly varying, so a high degree of regular-
ization is not necessarily a problem for our particular toy physics model. The inference
results from the unfolding are given for each plot in Figure 11. Even though the weight
functions differ substantially, they all give very similar values in the inference of the model
parameters. After seeing the graphs for gelu with § = 1 (right column in Figure 11), we
expected it to have better precision, but that’s not the case. The KDE and all three NN
activation choices all give inference uncertainties of around 0.010 for the model y and 0.014
for the model o2. Note that the inference uncertainty scale is quite small compared to the
horizontal axis range shown in Figure 11.
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Figure 10. Average weight correlation between two events as a function of the absolute distance
between the events in the observable. The results for the KDE are compared with three different
NN activation function choices: relu, gelu with § =1, and gelu with g = 4.

~ 18 —



= Unfolding

14 KDE, sample 0 True 14 relu, sample 0 14 gelu, B=4, sample 0 14 gelu, B=1, sample 0

12 12 12 12
06 06 06 \ 06
= = l 02 4 =0.1949 l 1 =0.1947

Event véelg ht
Event V\éelg ht
Event V\éelg ht
Event V\éelg ht

02 0.1929 02 u=0.1950
V’J 0% =0.8001 0%=0.8043 0% =0.8022 02=0.8027
0. 4 0. 1 0.0 0.0 Ll
4 ) 0 2 4 i 3 0 2 4 -4 - 3 2 4 4 2 o 2 4
Feature coordinate Feature coordinate Feature coordinate Feature coordinate
— Unfoldi
14 KDE, sample 1 el 14 relu, sample 1 14 gelu, =14, sample 1 14 gelu, B=1,sample 1

12 //\ 12 /\ 12 12
1.0

: / AL ARrA

06
A/ " " B
V4 4 ,
02 j u=02016 02 u=0.1981 02 =0.1977 02 =0.1980
' 02=0.8181 02=0.8229 02 0.8200 oz 0.8202
00 Vi

-4 -2 0 2 4 -4 -2 0 2 a -4 -2 0 2 a
Feature coordinate Feature coordinate Feature coordinate Feature coordlnate

Event v‘ée\ght

Event V\éeight

Event V\ée\ght

Event weight
e

14 KDE, sample 2 e 14 relu, sample 2 14 gelu, B=4, sample 2 14 gelu, B=1, sample 2
w2 1 1 /\ 1
i e / » / »
z = = / =
2 E= E= E=
Los Los Los Los
€ e e e
D os D os D os D os
i o I I /
04 04 04 04
02 g =0.2077 02 =0.2078 02 u=0.2076 02 =0.2078
02 0.8162 02 0.8182 7 0%2=0.8126 02 0.8118
0 o0 L oo LA oo LA,
74 -4 2 0 2 4 -4 2 0 2 a -a 2
Feature coordmate Feature coordinate Feature coordinate Feature coordlnate

Figure 11. Graphs of the event weight function from the unfolding compared with the true event
weight function. The columns show different options within OmniFold: left is the KDE, center left
is NNs with relu activation, center right is NNs with gelu activation with 8 = 4, and right is
NNs with gelu activation with 8 = 1. Each row is the results for a particular test sample and the
columns within a row all use the same test sample.

C Ensembling and inference resolution from NN model parameter ini-
tialization

The converged state of the unbinned unfolding when using NNs within OmniFold has
some dependence on the random initialization of the NN model weights. This impacts the
resolution of the unfolding and downstream inference. However, this effect can be removed
by averaging the output of several runs of the full unfolding, where each run starts with a
different set of random initial NN model weights. This averaging is known as ensembling.
Averaging the final unfolding weights is known as parallel ensembling [44]. Figure 12 shows
the inference uncertainty on the model mean and model variance for our 1D study with
detector smearing of 0.5 as a function of the number of runs used in the ensemble average.
Our interpretation of these results is that an ensemble of 10 runs is sufficient to remove
the parameter initialization contribution to the unfolding resolution.

Figure 13 shows the components of the overall inference uncertainty as a function of
the level of detector smearing. The orange circles show the resolution, from the RMS of
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the inference distribution, when the inference is done 200 times on the same dataset with
different initial random NN model weights in a single run. This is a direct measure of the
size of the parameter initialization resolution contribution o,. The blue squares show the
results for unfolding 200 independent datasets without ensembling o;. The green triangles
show the results for unfolding the same 200 independent datasets, where the ensemble
average of 10 runs is used o1g9. The red diamonds show the quadrature difference of the

l-run minus the parameter initialization resolution /0% — O'g, which agrees fairly well with

the 10-run ensemble average resolution o9, as expected.
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Figure 12. Inference uncertainty on the model parameters for the 1D study as a function of the
number of runs in the ensemble average. A detector smearing of 0.5 was used.
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Figure 13. Inference uncertainty on the model parameters for our 1D study as a function of
detector smearing. The orange circles are a measure of the contribution from the initialization of

the random NN weights o,. The blue squares show the resolution without ensembling o;. The

Green triangles show the resolution for a 10-run ensemble average o19. The quadrature difference
\Jo? — O’% agrees fairly well with the 10-run ensemble average.
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