Multidimensional Deconvolution with Profiling
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» |nstrumental effects distort spectra from their true values.
Statistically removing these distortions is called unfolding in
particle physics.

* Modern unfolding methods utilize machine learning to enable
unbinned unfolding. OmniFold? (OF) is among the first classifier-
based methods applied to experimental data.

 However, most methods assume the detector response is
accurately modeled in simulation, which is only approximately true
In practice, with the presence of nuisance parameters.

« This work introduces Profile OmniFold (POF), a novel algorithm
that extends OmniFold while retaining its key advantages:
(1) simultaneously profiles nuisance parameters during iteration.
(2) works with unbinned data.
(3) utilizes the power of neural network classifiers.
(4) unfolds multidimensional observables.

Methodology

EM algorithm with the presence of nuisance parameter:

In each iteration, maximize

Q(v,8]v®,06®) = [ p() S p(xly, v®),6®)) log p(y, x|v, ) dxdy + log p, (6)
subjectto [ v(x)g(x)dx = 1,

where

v = reweighting function for the particle-level simulation (theory prediction)
0 = nuisance parameter

x = particle-level quantity

y = detector-level observation

p = experimental distribution

g = Monte Carlo (simulation) distribution

po = prioron 6

w = response kernel reweighting function (w(y, x,0) = ps(yylfxi))
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Profile OmniFold iterates the following steps:

Step 1 reweights the Monte Carlo detector-level simulation to match data.

ri(y) = PO G(y) = [ w(y,x, 6% )W® (x)q(y, x)dx

q()’
Step 2 pulls back the detector-level weights to particle level.

AR (o ) v(")(x)q—oc—)- G(x) = [ w(y,x,09)r® (y)q(y, x)dy

q(x)’

Step 3 updates the nuisance parameter based on the detector-level
weights and the previous particle-level weights.
Find 8 %*1) such that

: : ’g(k-i-l)
9(k+1) _ 90 — ffW(Y; x,9(k))v(k)(x) W(y X )

w(y, x, 6(k+1))

r(y)q(y, x)dxdy

Experimental Results

X ~NQu,d%), Zy~ N(0,1), Z, ~ N(0,8%)

Y1=X+Zl, Y2=X+Z2
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Results of unfolding 2D Gaussian example. Above: The unfolded particle-level density
using POF (orange) and OF (blue) with both algorithms running for S iterations.
Upper-right: Unfolded spectrum aggregated into 80 bins. Bottom-right: Ratio of the
unfolded spectrum to the truth spectrum.
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