Multidimensional Deconvolution with Profiling

Huanbiao Zhu¹ (huanbiaz@andrew.cmu.edu), Krish Desai^{2,3}, Mikael Kuusela¹,

Vinicius Mikuni⁴, Benjamin Nachman^{3,5}, Larry Wasserman¹

¹Department of Statistics and Data Science, Camegie Mellon University

²Department of Physics, University of California, Berkeley

³Physics Division, Lawrence Berkeley National Laboratory

⁴National Energy Research Scientific Computing Center, Berkeley Lab

⁵Berkeley Institute for Data Science, University of California, Berkeley

Motivation

- Instrumental effects distort spectra from their true values.
 Statistically removing these distortions is called unfolding in particle physics.
- Modern unfolding methods utilize machine learning to enable unbinned unfolding. OmniFold² (OF) is among the first classifierbased methods applied to experimental data.
- However, most methods assume the detector response is accurately modeled in simulation, which is only approximately true in practice, with the presence of nuisance parameters.
- This work introduces Profile OmniFold (POF), a novel algorithm that extends OmniFold while retaining its key advantages:
 - (1) simultaneously profiles nuisance parameters during iteration.
 - (2) works with unbinned data.
 - (3) utilizes the power of neural network classifiers.
 - (4) unfolds multidimensional observables.

Methodology

EM algorithm with the presence of nuisance parameter:

In each iteration, maximize

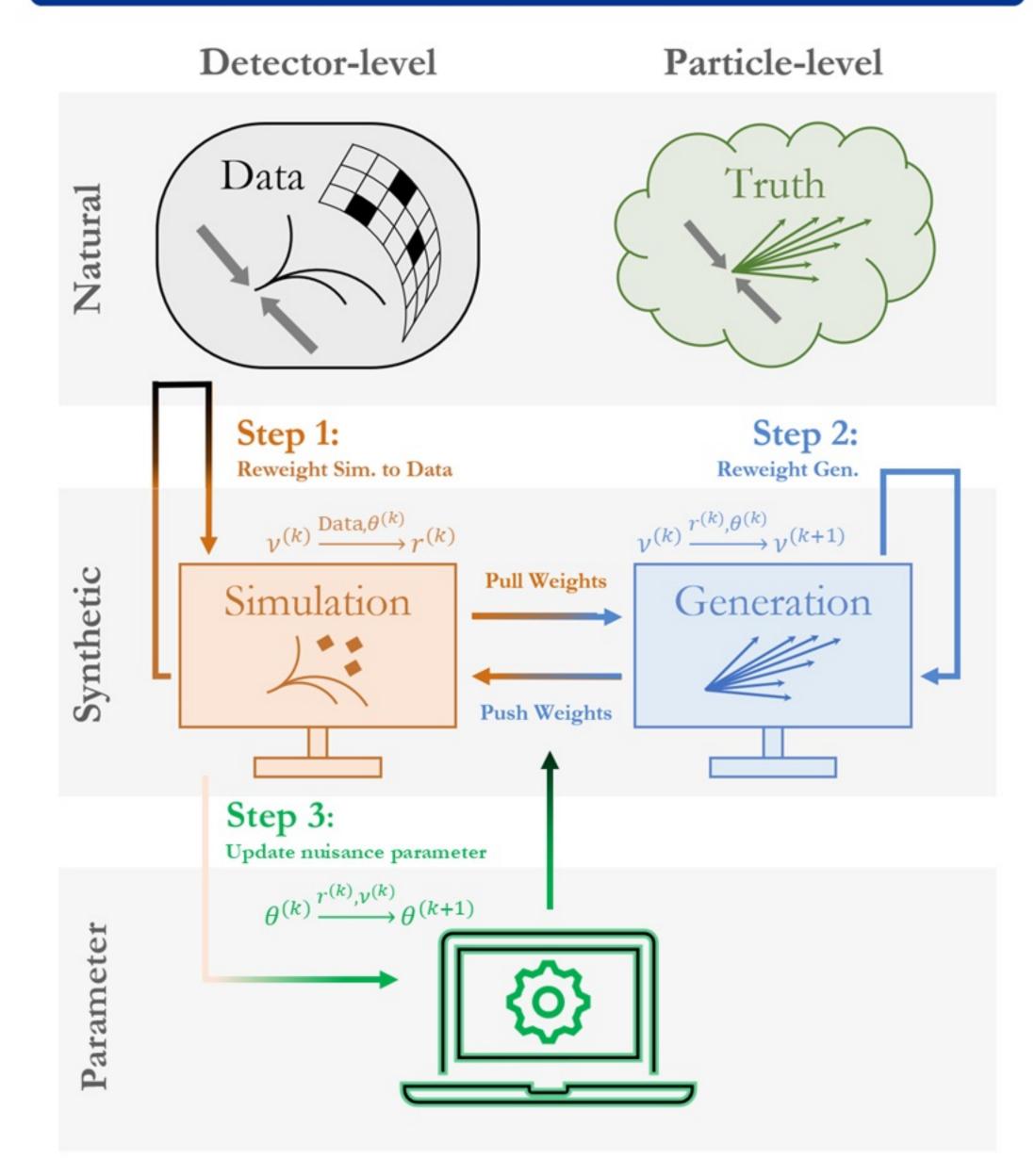
$$Q(\nu,\theta|\nu^{(k)},\theta^{(k)}) = \int p(y) \int p(x|y,\nu^{(k)},\theta^{(k)}) \log p(y,x|\nu,\theta) \, dxdy + \log p_0(\theta)$$

subject to
$$\int \nu(x) q(x) dx = 1,$$

where

- $\nu =$ reweighting function for the particle-level simulation (theory prediction)
- θ = nuisance parameter
- x = particle-level quantity
- y =detector-level observation
- p =experimental distribution
- q = Monte Carlo (simulation) distribution
- $p_0 = \text{prior on } \theta$
- $w = \text{response kernel reweighting function} \left(w(y, x, \theta) = \frac{p(y|x, \theta)}{q(y|x)} \right)$

Profile OmniFold Algorithm



Profile OmniFold iterates the following steps:

Step 1 reweights the Monte Carlo detector-level simulation to match data.

$$r^{(k)}(y) = \frac{p(y)}{\tilde{q}(y)}, \qquad \tilde{q}(y) = \int w(y, x, \theta^{(k)}) v^{(k)}(x) q(y, x) dx$$

Step 2 pulls back the detector-level weights to particle level.

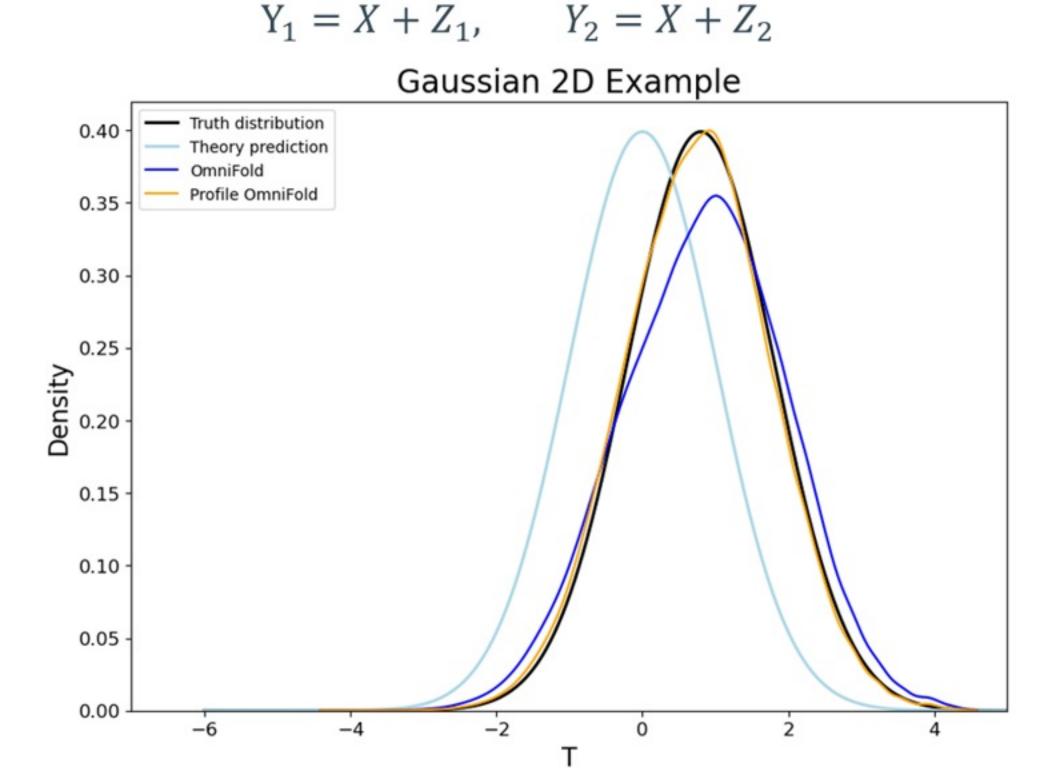
$$v^{(k+1)}(x) = v^{(k)}(x) \frac{\tilde{q}(x)}{q(x)}, \qquad \tilde{q}(x) = \int w(y, x, \theta^{(k)}) r^{(k)}(y) q(y, x) dy$$

Step 3 updates the nuisance parameter based on the detector-level weights and the previous particle-level weights.

Find
$$\theta^{(k+1)}$$
 such that

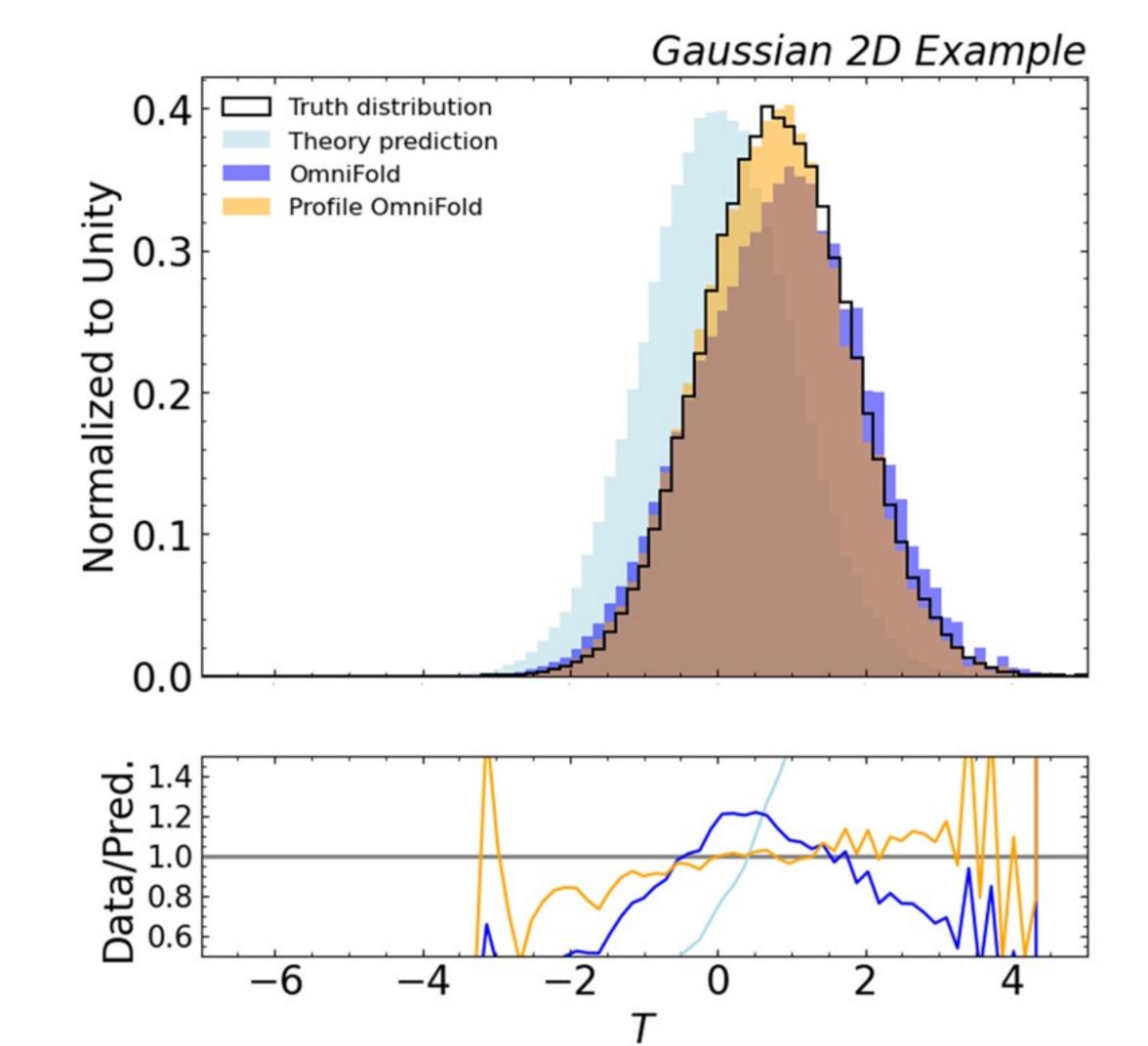
$$\theta^{(k+1)} - \theta_0 = \int \int w(y, x, \theta^{(k)}) v^{(k)}(x) \frac{\dot{w}(y, x, \theta^{(k+1)})}{w(y, x, \theta^{(k+1)})} r^{(k)}(y) q(y, x) dx dy$$

Experimental Results



 $X \sim N(\mu, \sigma^2), Z_1 \sim N(0,1), Z_2 \sim N(0, \theta^2)$

Results of unfolding 2D Gaussian example. Above: The unfolded particle-level density using POF (orange) and OF (blue) with both algorithms running for 5 iterations. Upper-right: Unfolded spectrum aggregated into 80 bins. Bottom-right: Ratio of the unfolded spectrum to the truth spectrum.



References