# Multidimensional Deconvolution with Profiling

Huanbiao Zhu<sup>1</sup> (huanbiaz@andrew.cmu.edu), Krish Desai<sup>2,3</sup>, Mikael Kuusela<sup>1</sup>,

Vinicius Mikuni<sup>4</sup>, Benjamin Nachman<sup>3,5</sup>, Larry Wasserman<sup>1</sup>

<sup>1</sup>Department of Statistics and Data Science, Camegie Mellon University

<sup>2</sup>Department of Physics, University of California, Berkeley

<sup>3</sup>Physics Division, Lawrence Berkeley National Laboratory

<sup>4</sup>National Energy Research Scientific Computing Center, Berkeley Lab

<sup>5</sup>Berkeley Institute for Data Science, University of California, Berkeley











### Motivation

- Instrumental effects distort spectra from their true values.
  Statistically removing these distortions is called unfolding in particle physics.
- Modern unfolding methods utilize machine learning to enable unbinned unfolding. OmniFold<sup>2</sup> (OF) is among the first classifierbased methods applied to experimental data.
- However, most methods assume the detector response is accurately modeled in simulation, which is only approximately true in practice, with the presence of nuisance parameters.
- This work introduces Profile OmniFold (POF), a novel algorithm that extends OmniFold while retaining its key advantages:
  - (1) simultaneously profiles nuisance parameters during iteration.
  - (2) works with unbinned data.
  - (3) utilizes the power of neural network classifiers.
  - (4) unfolds multidimensional observables.

## Methodology

EM algorithm with the presence of nuisance parameter:

In each iteration, maximize

$$Q(\nu,\theta|\nu^{(k)},\theta^{(k)}) = \int p(y) \int p(x|y,\nu^{(k)},\theta^{(k)}) \log p(y,x|\nu,\theta) \, dxdy + \log p_0(\theta)$$
  
subject to 
$$\int \nu(x) q(x) dx = 1,$$

where

- $\nu =$  reweighting function for the particle-level simulation (theory prediction)
- $\theta$  = nuisance parameter
- x = particle-level quantity
- y =detector-level observation
- p =experimental distribution
- q = Monte Carlo (simulation) distribution
- $p_0 = \text{prior on } \theta$
- $w = \text{response kernel reweighting function} \left( w(y, x, \theta) = \frac{p(y|x, \theta)}{q(y|x)} \right)$

# **Profile OmniFold Algorithm**



Profile OmniFold iterates the following steps:

Step 1 reweights the Monte Carlo detector-level simulation to match data.

$$r^{(k)}(y) = \frac{p(y)}{\tilde{q}(y)}, \qquad \tilde{q}(y) = \int w(y, x, \theta^{(k)}) v^{(k)}(x) q(y, x) dx$$

Step 2 pulls back the detector-level weights to particle level.

$$v^{(k+1)}(x) = v^{(k)}(x) \frac{\tilde{q}(x)}{q(x)}, \qquad \tilde{q}(x) = \int w(y, x, \theta^{(k)}) r^{(k)}(y) q(y, x) dy$$

**Step 3** updates the nuisance parameter based on the detector-level weights and the previous particle-level weights.

Find 
$$\theta^{(k+1)}$$
 such that

$$\theta^{(k+1)} - \theta_0 = \int \int w(y, x, \theta^{(k)}) v^{(k)}(x) \frac{\dot{w}(y, x, \theta^{(k+1)})}{w(y, x, \theta^{(k+1)})} r^{(k)}(y) q(y, x) dx dy$$

## **Experimental Results**



 $X \sim N(\mu, \sigma^2), Z_1 \sim N(0,1), Z_2 \sim N(0, \theta^2)$ 

Results of unfolding 2D Gaussian example. Above: The unfolded particle-level density using POF (orange) and OF (blue) with both algorithms running for 5 iterations. Upper-right: Unfolded spectrum aggregated into 80 bins. Bottom-right: Ratio of the unfolded spectrum to the truth spectrum.



### References