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Abstract

In many experimental contexts, it is necessary to statistically remove the impact
of instrumental effects in order to physically interpret measurements. This task
has been extensively studied in particle physics, where the deconvolution task
is called unfolding. A number of recent methods have shown how to perform
high-dimensional, unbinned unfolding using machine learning. However, one of
the assumptions in all of these methods is that the detector response is correctly
modeled in the Monte Carlo simulation. In practice, the detector response depends
on a number of nuisance parameters that can be constrained with data. We propose
a new algorithm called Profile OmniFold, which works in a similar iterative manner
as the OmniFold algorithm while being able to simultaneously profile the nuisance
parameters. We illustrate the method with a Gaussian example as a proof of concept
highlighting its promising capabilities.

1 Introduction

Instrumental effects distort spectra from their true values. Statistically removing these distortions is
essential for comparing results across experiments and for facilitating broad, detector-independent
analysis of the data. This deconvolution task (called unfolding in particle physics) is an ill-posed
inverse problem, where small changes in the measured spectrum can result in large fluctuations in
the reconstructed true spectrum. In practice, one observes data from the measured spectrum from an
experiment, and the goal is to estimate the true spectrum and quantify its uncertainty. See, e.g., [1–5]
for reviews of the problem. The detailed setup will also be introduced in section 2.1.

Traditionally, unfolding has been solved in a discretized setting, where measurements are binned into
a histogram (or are naturally represented as discrete, e.g., in images) and the reconstructed spectrum
is also represented as a histogram. However, this requires pre-specifying the number of bins, which
itself is a tuning parameter and can vary between different experiments. Additionally, binning limits
the number of observables that can be simultaneously unfolded.

A number of machine learning-based approaches have been proposed to address this problem [6, 7].
The first one to be deployed to experimental data [8–18] is OmniFold (OF) [19, 20]. Unlike
traditional methods, OmniFold does not require binning and can be used to unfold observables in
much higher dimensions using neural network (NN) classifiers. The algorithm is an instance of the
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Expectation-Maximization (EM) algorithm, which iteratively reweights the simulated events to match
the experimental data. The result is guaranteed to converge to the maximum likelihood, provided an
infinite sample size and the optimal classifier. However, one limitation in OmniFold, as in all machine
learning-based unfolding methods, is the assumption that the detector response is correctly modeled
in the simulation1. In practice, this is only approximately true, with the simulation depending on a
number of nuisance parameters that can be constrained by the observed data.

Recently, [21] introduced an unbinned unfolding method that also allows for profiling the nuisance
parameters. This is achieved by using machine learning to directly maximize the log-likelihood
function. While a significant step forward, this approach is limited to the case where the detector-level
data are binned so that one can write down the explicit likelihood (each bin is Poisson distributed).

In this work, we propose a new algorithm, called Profile OmniFold (POF), for unbinned and profiled
unfolding. Unlike [21], POF is completely unbinned at both the detector-level and pre-detector-
level (‘particle level’). Additionally, POF can be seen as an extension to the original OF algorithm
that iteratively reweights the simulated particle-level events but also simultaneously determines the
nuisance parameters.

2 Methodology

In this section, we introduce POF, which is a modified version of the original OF algorithm. Same as
the original OF, the goal of POF is to find the maximum likelihood estimate of the reweighting function
that reweights generated particle-level data from q(x) to the truth p(x). However, unlike in the original
OF algorithm, POF can also take into account nuisance parameters in the detector modeling and
simultaneously profile out these nuisance parameters. At the same time, POF retains the same benefits
as OF such that it can directly work with unbinned data, utilize the power of NN classifiers, and
unfold multidimensional observables or even the entire phase space simultaneously [19].

2.1 Statistical setup of the unfolding problem in the presence of nuisance parameters

In the unfolding problem, we are provided pairs of Monte Carlo (MC) simulations {Xi, Yi}ni=1 ∼
q(x, y), where Xi denotes a particle-level quantity and Yi the corresponding detector-level observation.
Then given a set of observed detector-level experimental data {Y ′

i }mi=1 ∼ p(y), our goal is to estimate
the true particle-level density p(x). The forward model for both MC simulation and experimental
data are described by

q(y) =

∫
q(y|x)q(x)dx, p(y) =

∫
p(y|x)p(x)dx, (1)

where q(y|x) and p(y|x) are kernels that represent the detector responses. In practice, different
detector configurations yield different detector responses, so it is often the case that q(y|x) ̸= p(y|x).
Additionally, the response kernel is assumed to be parameterized by some nuisance parameters θ,
which are given for the MC data but unknown for the experimental data.

Given this setup, let ν(x) be a reweighting function on the MC particle-level density q(x). Ultimately,
we want ν(x) ≈ p(x)/q(x). Also, suppose q(y|x) is specified by nuisance parameter θ0, i.e.
q(y|x) = p(y|x, θ0). Let w(y, x, θ) be a reweighting function on the MC response kernel q(y|x), i.e.,
w(y, x, θ) = p(y|x, θ)/q(y|x) Then the goal is to maximize the population log-likelihood

ℓ(ν, θ) =

∫
p(y) log p(y|ν, θ)dy + log p0(θ)

subject to
∫

ν(x)q(x)dx = 1,

(2)

where p0(θ) is a prior on θ to constrain the nuisance parameter, usually determined from auxiliary
measurements. In our case, we use the standardized Gaussian prior, log p0(θ) = −∥θ−θ0∥2

2 .

1By ’correctly modeled,’ we mean that both the parametric model for the detector response and the nuisance
parameters are correctly specified.
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2.2 Algorithm

The POF algorithm, like the original OF algorithm, is an EM algorithm. It iteratively updates the
reweighting function ν(x) and nuisance parameter θ toward the maximum likelihood estimate. The
key in the EM algorithm is the Q function, which is the complete data (x, y) expected log-likelihood
given the observed data (y) and current parameter estimates (ν(k), θ(k)). For the log-likelihood
specified in (2), the Q function is given by

Q(ν, θ|ν(k), θ(k)) =
∫

p(y)

∫
p(x|y, ν(k), θ(k)) log p(y, x|ν, θ)dxdy + log p0(θ)

subject to
∫

ν(x)q(x)dx = 1.

(3)

The E-step in the EM algorithm is to compute the Q function and M-step is to maximize over
ν and θ. The maximizer will then be used as the updated parameter values in the next iteration.
Specifically, in the kth iteration, we obtain the update (ν(k+1), θ(k+1)) by solving (ν(k+1), θ(k+1)) =
argmaxν,θQ(ν, θ|ν(k), θ(k)). As shown in Appendix A, we can solve this optimization problem in
three steps:

1. r(k)(y) = p(y)
q̃(y) ,

where q̃(y) =
∫
w(y, x, θ(k))ν(k)(x)q(y, x)dx

2. ν(k+1)(x) = ν(k)(x) q̃(x)q(x) ,

where q̃(x) =
∫
w(y, x, θ(k))r(k)(y)q(y, x)dy

3. Find θ(k+1) such that θ(k+1)−θ0 =
∫ ∫

w(y, x, θ(k))ν(k)(x) ẇ(y,x,θ(k+1))
w(y,x,θ(k+1))

r(k)(y)q(y, x)dxdy

The first step is almost the same as the first step in the original OF algorithm, which involves
computing the ratio of the detector-level experimental density and reweighted detector-level MC
density using the push-forward weights of w(y, x, θ(k))ν(k)(x). The density ratio can be estimated
by training a NN classifier to distinguish between the experimental data distribution p(y) and the
reweighted MC distribution q̃(y).

The second step also closely mirrors the second step of the original OF algorithm and involves
computing the ratio of the reweighted particle-level MC density using the pull-back weights of
w(y, x, θ(k))r(k)(y) and the particle-level MC density.

The third step involves updating the nuisance parameter numerically. The right-hand side of the
equation is more involved, since it requires computing ẇ(y,x,θ)

w(y,x,θ) , where ẇ(y, x, θ) is the derivative
of w(y, x, θ) with respect to θ. Fortunately, [21] shows that the dependency of w(y, x, θ) on θ
can be learned through neural conditional reweighting [22] using another set of synthetic data
(Xi, Yi, θi). Then, the trained network provides estimates for both w(y, x, θ) and its derivative
ẇ(y, x, θ). Additionally, w(y, x, θ(k)), ν(k)(x), r(k)(y) have all been computed in the previous steps.
Finally, the integral is over the joint distribution q(y, x) so we can just use the empirical average to
obtain the estimate.

In summary, the POF algorithm extends the original OF iteration by including an additional step for
updating the nuisance parameter. However, unlike OF, POF does not have guaranteed convergence to
the population maximum likelihood since the likelihood function might not be concave in θ. The
algorithm iterates through these three steps for a finite number of iterations, typically fewer than 10.
Early stopping is often used to help regularize the solution.

3 Gaussian example

We illustrate the POF algorithm with a simple Gaussian example. Consider a one-dimensional
Gaussian distribution at the particle level and two Gaussian distributions at the detector level. The
data are generated as follows:

Yi1 = Xi + Zi1,

Yi2 = Xi + Zi2,
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where Xi ∼ N (µ, σ2), Zi1 ∼ N (0, 1), Zi2 ∼ N (0, θ2). Here, θ is the nuisance parameter, which
only affects the second dimension of the detector-level data. This is qualitatively similar to the
physical case of being able to measure the same quantity twice. Since the response kernel in this case
is a Gaussian density, we have access to the analytic form p(y|x, θ) and, consequently, w(y, x, θ) as
well. For simplicity, we use the analytic form directly in the algorithm for this example. However,
even if we do not know the analytic form, we can learn w(y, x, θ) as described in Sec. 2.2.

Dataset Based on the above data-generating process, Monte Carlo data are generated with µ =
0, σ = 1, θ = 1 and experimental data are generated with µ = 0.8, σ = 1, θ = 1.5. We simulate 105

events each for the MC data and experimental data.

Neural network architecture and training The neural network classifier for estimating the density
ratios is implemented using TensorFlow and Keras. The network contains three hidden layers with
50 nodes per layer and employs the ReLU activation function. The output layer consists of a single
node with a sigmoid activation function. The network is trained using the Adam optimizer [23] to
minimize the weighted binary cross-entropy loss. The network is trained for 10 epochs with a batch
size of 10000. None of these parameters were optimized for this proof-of-concept demonstration. All
training was performed on an NVIDIA A100 Graphics Processing Unit (GPU), taking no more than
10 minutes.

Figure 1: Results of unfolding a 2D Gaussian example. Left: The unfolded particle-level density
using POF (orange) and OF (blue), with both algorithms running for 5 iterations. Top-right: Unfolded
spectrum aggregated into 80 bins. Bottom-right: Ratio of the unfolded spectrum to the truth spectrum.

3.1 Results

Figure 1 illustrates the results of unfolding the 2D Gaussian data using both the proposed POF
algorithm and the original OF algorithm. The cyan line is the Monte Carlo distribution for which
the reweighting function ν(x) is applied. The results show that the original OF algorithm (blue
line) deviates significantly from the true distribution (black line). This discrepancy arises because
OF assumes p(y|x) = q(y|x), an assumption that is invalid in the presence of incorrectly specified
nuisance parameters. On the other hand, the POF algorithm simultaneously optimizes the nuisance
parameter along with the reweighting function. The results show that the unfolded solution (orange
line) aligns closely with the truth (black line) and the estimated nuisance parameter is θ̂ = 1.48 (true
parameter is θ = 1.50). Future work will deploy standard techniques like bootstrapping to determine
uncertainties.

4 Conclusion

In this work, we have proposed a new algorithm called Profile OmniFold, which uses machine
learning to perform unfolding while also simultaneously profiling out the nuisance parameters. This
relaxes the original assumption in OmniFold that the detector response needs to be correctly modeled
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in the Monte Carlo simulation and constrains the nuisance parameter in a data-driven way. At the
same time, the proposed algorithm still shares similar steps as in OF preserving its many benefits,
including ease of implementation.

The results from the simple Gaussian example demonstrate the algorithm’s promising performance.
Our next objective is to apply POF to more realistic examples and include critical studies on robustness,
stability, and uncertainty quantification.
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A Appendix / supplemental material

In this appendix, we provide the derivation of the POF algorithm presented in Sec. 2.2. As mentioned
there, in each iteration, the algorithm aims to maximize the Q-function

Q(ν, θ|ν(k), θ(k)) =
∫

p(y)

∫
p(x|y, ν(k), θ(k)) log p(y, x|ν, θ)dxdy + log p0(θ)

=

∫
p(y)

∫
p(x|y, ν(k), θ(k)) log[w(y, x, θ)q(y|x)ν(x)q(x)]dxdy + log p0(θ)

subject to
∫

ν(x)q(x)dx = 1.

For simplicity, consider the case where θ ∈ R, but the argument can also be extended to higher
dimensions. Assume the prior is a standard Gaussian, log p0(θ) = − (θ−θ0)

2

2 , and write the Q-function
in its Lagragian form,

Q̃(ν, θ|ν(k), θ(k)) = Q(ν, θ|ν(k), θ(k))− λ1

(∫
ν(x)q(x)dx− 1

)
.

First, we take derivative of Q̃ with respect to ν(x) and set it to be 0,

δ

δν(x)
Q̃(ν, θ|ν(k), θ(k)) =

∫
p(y)p(x|y, ν(k), θ(k))dy

ν(x)
− λ1q(x) = 0.

Integrating both sides over
∫
ν(x)dx yields that λ1 = 1. Therefore, the stationary condition for ν(x)

satisfies

ν(x) =

∫
p(y)p(x|y, ν(k), θ(k))dy

q(x)

=

∫
p(y)w(y, x, θ(k))q(y|x)ν(k)(x)dy∫
w(y, x′, θ(k))q(y|x′)ν(k)(x′)q(x′)dx′

= ν(k)(x)

∫
w(y, x, θ(k))q(y|x) p(y)

q̃(k)(y)
dy,

(4)
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where q̃(k)(y) =
∫
w(y, x′, θ(k))q(y|x′)ν(k)(x′)q(x′)dx′. Multiplying the right-hand side by q(x)

q(x) ,
we obtain

ν(x) = ν(k)(x)

∫
w(y, x, θ(k)) p(y)

q̃(k)(y)
q(y, x)dy

q(x)
.

This corresponds to exactly the first two steps in the algorithm, where r(k)(y) = p(y)
q̃(k)(y)

and

q̃(k)(x) =
∫
w(y, x, θ(k))r(k)(y)q(y, x)dy. On the other hand, taking derivative of Q̃ with respect to

θ, we obtain

δ

δθ
Q̃(ν, θ|ν(k), θ(k)) =

∫ ∫
p(y)p(x|y, ν(k), θ(k))ẇ(y, x, θ)

w(y, x, θ)
dxdy − (θ − θ0)

where ẇ(y, x, θ) = δw(y,x,θ)
δθ . Setting this to be 0, we have

θ − θ0 =

∫ ∫
p(y)p(x|y, ν(k), θ(k))ẇ(y, x, θ)

w(y, x, θ)
dxdy

=

∫ ∫
p(y)w(y, x, θ(k))q(y|x)ν(k)(x)q(x)ẇ(y, x, θ)

w(y, x, θ)
∫
w(y, x′, θ(k))q(y|x′)ν(k)(x′)q(x′)dx′ dxdy

=

∫ ∫
q(y, x)w(y, x, θ(k))ν(k)(x)

ẇ(y, x, θ)

w(y, x, θ)

p(y)

q̃(k)(y)
dxdy,

(5)

where again q̃(k)(y) =
∫
w(y, x′, θ(k))q(y|x′)ν(k)(x′)q(x′)dx′. This corresponds to the third step in

the algorithm with r(k)(y) = p(y)
q̃(k)(y)

. While this step requires the assumption that Q̃(ν, θ|ν(k), θ(k))
is concave in θ, which is not always guaranteed, one can also consider alternative ways for updating
θ. For example, instead of solving for the stationary point of Q̃ with respect to θ, one could employ a
first-order update

θ(k+1) = θ(k) + γ · δ

δθ
Q̃(ν, θ|ν(k), θ(k))|θ=θ(k) ,

where γ ≥ 0 is an appropriately chosen step size. This approach effectively performs a single step of
gradient ascent with respect to θ.
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