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Introduction

Differential cross section measurements are
the currency of scientific exchange in particle
and nuclear physics. The key challenge for
these analyses is the correction for detector
distortions known as deconvolution or
unfolding. In this work, we show how
normalizing flows and neural posterior
estimation can be used for unfolding, which
we call Neural Posterior Unfolding (NPU).
This approach has many potential
advantages, including implicit regularization
from the neural networks and fast inference
from amortized training. We demonstrate this
approach using simple Gaussian examples as
well as a simulated jet substructure
measurement at the Large Hadron Collider.

Statistics of Unfolding

For binned unfolding, we approximate the
detector response with the response matrix

R;; = Pr(m;| t;) where m; indicates that the

observable is measured in bin ¢ at detector-
level and 1,}- indicates that the observable is in

bin j at particle-level. The response matrix for
collider experiments can be computed
extremely precisely using simulations.
lterative Bayesian Unfolding (IBU) [1] will
serve as our baseline. One way of describing
it is through the following iterative protocol:
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First, Fig.1(a) shows the case where

p = 1. With small migrations, all methods

perform about the same, and the true
answer is well-contained within the
confidence regions of both IBU
(determined via boostrapping) and NPU.

However, once we set p =~ 0, Fig.1(b)
shows the challenges with IBU highlighted
In the previous section. In particular, IBU
returns a single value while NPU returns a
broad uncertainty region (all values
consistent with the total counts).
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(a) 2-bin example
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Implementation

We implement neural posterior unfolding
using Tensorflow [2] and Tensorflow
Probability packages [3]. The normalizing
flow implementation is based on the MADE
[4,5] implementation consisting of an
invertible transformation using two fully
connected layers with 16 nodes and
SWISH [6] activation functions. The
conditional inputs, based on pre-detector
observables, are included with an
additional fully connected layer. The model
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(b) 2-bin example with degenerate response

Figure 1: Demonstration of NPU using a simple two-bin example with (a) a non-degenerate (i.e. nearly diagonal) response matrix v.s. (b) a
response with degeneracy (as in the example from the text). The maximum likelithood estimation (MLE) of NPU shows good agreement
with the truth valucs. The posterior from NPU 15 also compatible with the confidence region evaluated by IBU using bootstrap datasets.

Particle Physics Example

Our study is based on proton-proton
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This already highlights potential advantages
of NPU: the statistical uncertainty is part of
the result and the regularization is implicit in
the training and automated through model
selection (via the validation loss). Another
difference between NPU and IBU is their
behavior in unconstrained regions of phase
space. Cross sections in the particle-level
phase space that are un- or poorly
constrained by detector-level measurements
should be highly uncertain. However, |IBU
could only return a point estimate with an
uncertainty of zero, as demonstrated in Fig.1,
whereas NPU can circumvent this issue by

momentum-weighted first radial moment of
the radiation within a jet. Gluon-initiated jets
tend to be wider than quark jets. The
unfolding performance of NPU is shown in

Fig.2(a) and compared to IBU with 10
iterations. The corresponding corner plot is
in Fig.2(b). NPU continues to succeed in
recovering the truth distribution inside the
high-energy jets produced in the
complicated real-world LHC environment,
despite the challenging long tail of this
widely used observable.
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is then trained for between 1000 and 1500
epochs. We used the ADAM [7] optimizer

with a learning rate of 0.001. After training,
we determine the unfolded response by
performing the MLE. This is carried out by
minimizing the negative log-likelihood of
the data based on the conditional inputs,
also with ADAM.
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2-bin Degenerate Response Example

We first start with a simple two-bin example. In

this case, 1, m € RZand R is a 2 X 2 matrix.

Let the response matrix R = |6 p, p o],
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