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Abstract

e Deconvolving detector distortions — critical step to compare
cross section measurements with theoretical
predictions

e Most approaches require binning
e Theoretical predictions often at the level of moments.

e New approach to directly unfold distribution moments
as a function of other observables without discretizing data

e Moment Unfolding uses amodified GAN architecture

e Demonstrate the performance of this approach using jet
substructure measurements in collider physics.

Background

e Unfolding (deconvolution): correcting detector distortions
in experimental data — necessary for accurately comparing data
between experiments and with theoretical predictions.

e Typically, entire spectra unfolded — moments computed afterward.
e Current approaches discretize support—then unfold histogram.
e This binning procedure introduces discretization artifacts.

e Unfold without binning — generic solution to unfolding entire
spectra — may compromise precision for small set of moments.

e Dedicated machine learning-based unfolding method to directly
unfold the observable moments.

® GAN learns reweighting function inspired by the Boltzman
equation — parameters identified with observable moments

e Noniterative in contrast to methods like Omnifold (Andreassen
et al, Phys. Rev. Lett. 124, 182001 — 2020)

Method

Neural Networks

Generator: g(r) = eM* " T2" reweights generation to truth.
n trainable parameters A; learn n moments

Discriminator: d : R — [0, 1] distinguishes reweighted
simulation from data

e Maxwell-Boltzmann distribution maximizes entropy while holding
mean energy constant

e Moment unfolding maximises BCE loss holding moments constant

Data sets

e Simulation (Xg) : detector level simulation

e Generation (X¢) : particle level simulation
e Data (Xp) : detector level data
o Truth (X7) : particle level data
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Machine Learning Implementation

Loss Function
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e All neural networks implemented using the KERAS high-level API
with TENSORFLOW?Z2 backend, optimized with ADAM.

e Discriminator d parametrized with three hidden layers, 50 nodes
per layer. Intermediate layers — ReLU, last layer — sigmoid.

Gaussian Case Study
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Jet Substructure

Jet width
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® pr; = transverse momentum
e AR; = angular distance from jet axis

e Fixample focusses on jet width. Method can be applied to other
jet observables like charge, mass, etc.
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e First two moments of the reweighted generation match truth well
e Full distributions not statistically identical

e T'his is because higher moments are relevant and are not the same
between truth and generation.

Conclusions and Outlook

e Proposed Moment Unfolding as a novel, flexible, unbinned, and
non-iterative reweighting—based deconvolution method

e Showed promising results when applied to both Gaussian datasets
as well as detector data from the LHC

e Future work — whether this method could be used to unfold
infinitely many moments, i.e. entire probability density

e Important questions about partition function normalization,
stability, and overlapping support



