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1 Introduction

Several problems in physics, while in principle having been solved, do not

admit closed form solutions. In particular, problems in perturbation theory,

where in principle a problem may be solved to all orders in a perturbative

parameter with sufficient effort. Padé approximation is a very simple and

powerful generalisation of Taylor approximation. This method efficiently ex-

tracts quantitative and qualitative information about solutions from formal

power series obtained perturbatively. One of the simplest non-trivial cases of

this occurs while computing the energy eigenvalue expansion quartic quan-

tum anharmonic oscillator, an oscillator system where the quadratic potential

has a small quartic correction:

H “ p2 ` x2 ` βx4

where β is the small parameter in which perturbative expansions are gener-

ated.

By analytic continuation, a convergent power series can be used to deter-

mine a function everywhere up to a natural boundary (a dense set of singu-

larities). However in practice, this convergence may be impractically slow,

or may not converge at all to the point of interest. This can be overcome in

certain cases through the theory of Padé approximants.

In chapter 2, we will study the properties of Padé approximants. In

chapter 3, we will discuss the anharmonic oscillator, and in chapter 4 we
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will discuss the application of the Padé approximant method to the physical

problem of the quantum anharmonic oscillator.
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2 Padé Approximants: Convergence and An-

alytic Properties

Padé approximants generalise Taylor approximation by using rational func-

tions instead of polynomials. They can be formally defined as follows.

Definition 2.1. The rN,M sf Padé approximant associated with a formal

power series fpzq “
ř

anz
n is the unique rational function rN,M sf pzq of

degree N in the numerator and degree M in the denominator such that

rN,M spzq ´
M`N
ÿ

n“0

anz
n
“ O

`

zM`N`1
˘

(1)

Note. When f is clear from context, it may be suppressed

rM,N s :“ rM,N sf

The given definition is not a constructive one, and it is in general fairly

difficult to construct Padé approximants from this definition. There is how-

ever a constructive algorithm to directly compute them. The exact Padé

approximant can be computed explicitly using the coefficients of the power

series:
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rM,N spzq “

∣∣∣∣∣∣∣∣∣∣∣∣∣

aM´N`1 aM´N`2 . . . aM`1
...

...
. . .

aM aM`1 . . . aM`N
řM
n“N an´Nz

n
řM
n“N´1 an´N`1z

n . . .
řM
n“0 anz

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

aM´N`1 aM´N`2 . . . aM`1
...

...
. . .

aM aM`1 . . . aM`N

zN zN´1 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

where @n ă 0 an :“ 0.r1s

Theorem 2.1 (Uniqueness). The rational function obtained from Equation

(2) is the unique function satisfying Definition 2.1

Proof. Let P pzq
Qpzq

be any rational function satisfying Definition 1.1. Let

rN,M spzq “
Rpzq

Spzq

.

Consider
"

rN,M spzq ´
P pzq

Qpzq

*

QpzqSpzq (3)

. This expression is a degree M ` N polynomial, but by Equation (1) this

expression is in OpzM`N`1q, hence this expression is identically zero. Hence
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rN,M spzq “ P pzq
Qpzq

upto cancellation of common factors between the numerator

and denominator.

Just as Taylor polynomials in Crzs the polynomial ring, can be extended

to Taylor series in Crrzss the power series ring, Padé approximants in Crz, z´1s

can first be extended to series with infinitely many terms in the numerator

and finitely many terms in the denominator or vice versa, in Crrz, z´1s and

Crz, z´1ss and then further be extended to infinite degree in both the nu-

merator and denominator in Crrz, z´1ss. The former are more amenable to

rigorous theorems, but the latter are more powerful and useful when applied

to problems in physics.

Theorem 2.2 (de Montessus de Balloire, 1902). Let fpzq be meromorphic

on |z| ď R with m poles. Then

lim
NÑ8

rN,mspzq “ fpzq

uniformly on t|z| ď Ruztε´disks around the polesu.

This result also holds if the degree of the denominator goes to infinity

while the degree of the numerator is kept finite.

Remark. @n P Z the study of rN ` k,N s Padé approximants of a function f

can be reduced to the study of rN,N s of a function g related to f as
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gpzq “

$

’

’

’

&

’

’

’

%

z´nfpzq n ď 0

z´n

«

fpzq ´
n
ÿ

i“0

aiz
i

ff

n ą 0
(4)

where ai are the Taylor coefficients of f .

2.1 Conformal Structure

The conformal structure preserving transformations of the complex plane are

called linear fractional transformations. They are maps of the form

z ÞÑ
az ` b

cz ` d

with a, b, c, d P C, ad ´ bc ‰ 0. This set of tranformations forms a group M

under composition.

Definition 2.2. The group of homographic transformations H is the

subgroup of the group of linear fractional transformations that are of the

form

z ÞÑ
az

1` bz

Theorem 2.3.

@φ P H rN,N sf˝φ “ rN,N sf ˝ φ (5)

Proof. Let φpzq “ az
1`bz

and rN,N sf “
P
Q

.
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rN,N sf ˝ φpzq “
P
`

az
1`bz

˘

Q
`

az
1`bz

˘ ˆ
p1` bzqN

p1` bzqN
“
ppzq

qpzq

for some degree N polynomials p, q. Expanding as a power series this

agrees term by term to the power series expansions of f
`

az
1`bz

˘

at least to

order z2N . Hence by the uniqueness theorem of Padé approximants, Theorem

2.1,

p

q
“
P ˝ φ

Q ˝ φ
“ rN,N sf˝φ

Theorem 2.4.

@ρ P M rN,N sρ˝f “ ρ ˝ rN,N sf (6)

Proof. Let ρpzq “ az`b
cz`d

and rN,N sf “
P
Q

.

ρ ˝ rN,N sf pzq “
aP pzq
Qpzq

` b

cP pzq
Qpzq

` d
ˆ
Qpzq

Qpzq
“
ppzq

qpzq

degree N polynomials p “ aP ` bQ, q “ cP ` dQ. Again p
q
“ rN,N sρ˝f by

Theorem 2.1

Using these theorems, one can prove the following convergence theorem

Theorem 2.5. Let tfkpzqukPN be a sequence of rNk,Mks Padé approximants,

such that

lim
kÑ8

Nk `Mk “ 8

. Then if |fk| is uniformly bounded on DRp0q then Dr ă R and Df analytic,
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such that fkpzq Ñ fpzq uniformly on Drp0q and f has a power series with

radius convergence ě R. [2]

Proof. Let ε ą 0 be arbitrary. fk be uniformly bounded by B on DRp0q.

fk “ rNk,Mks rational and bounded on a compact subset of C ùñ fk is

analytic onDRp0q ùñ its power series
ř

n akpnqz
n had radius of convergence

ě R. By Cauchy’s inequality for the Taylor series coefficients of a complex

analytic function akpnq is bounded uniformly in k by B{Rn. Hence

∣∣∣∣∣fkpzq ´ t
ÿ

n“0

akpnqz
n

∣∣∣∣∣ ď 8
ÿ

n“t`1

|akpnqz
n
| ď

8
ÿ

n“t`1

W
´ r

R

¯n

“
W

`

r
R

˘t`1

1´ r
R

(7)

r
R
ă 1 ùñ for sufficiently large t

∣∣∣∣∣fkpzq ´ t
ÿ

n“0

akpnqz
n

∣∣∣∣∣ ă ε

2

uniformly in k. lim
kÑ8

Nk `Mk “ 8 ùñ DK P N @k ě K N `M ě t. Hence

by the uniqueness theorem, Theorem 2.1, the first t ` 1 terms are identical

@k ě K.

@j, k ě K @z P Drp0q |fkpzq ´ fjpzq| ď

∣∣∣∣∣fkpzq ´ t
ÿ

n“0

akpnqz
n

∣∣∣∣∣`
∣∣∣∣∣fjpzq ´ t

ÿ

n“0

ajpnqz
n

∣∣∣∣∣ ă ε

(8)

Hence by the uniform convergence theorem the limit, f is analytic on
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DRp0q. Hence by Taylor’s theorem its power series has radius of convergence

at least R.

This then allows us to constrain the analyticity of the limit function.

Theorem 2.6. Let tfkpzqukPN be a sequence of rNk,Mks Padé approximants,

such that

lim
kÑ8

Nk `Mk “ 8

. Let D1, D2 by closed simply connected domains such that 0 P intD1XintD2.

Then |fk| is uniformly bounded on D1 and if 1
|fk|

is uniformly bounded on D2

then Df meromorphic, such that fkpzq Ñ fpzq uniformly on intD1 X intD2.

Proof. DR1 such that DR1 Ď D1. So by Theorem 2.5 Df analytic on DR1p0q

such that the sequence converges to uniformly on DR1p0q. By applying The-

orem 2.5 on a chain of disks, we can extend f to D1.

1

fk
is an rMk, Nks Padé approximant, so the

"

1

fk

*

nPN
also form a sequence

that satisfies the hypotheses on D2. Hence again by application of Theorem

2.5, this sequence converges uniformly to 1
f

analytic. Since the inverse of an

analytic function is meromorphic, f is a meromorphic function that f1

Theorem 2.6 is also practically useful. One considers a domain of in-

terest in the complex plane on which on physical grounds it is known that

the function is meromorphic. For instance, it is commmon to consider the

neighbourhood of a real interval. From an infinite sequence of rN,M s ap-

proximants, select a subsequence which satisfies the hypotheses of Theorem
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2.6. Then by Theorem 2.6 one has obtained a sequence of rational functions

that uniformly converge to the chosen function.[2]

When M or N remains finite, several results are known, and the main

mathematical problem associated with the convergence properties and ana-

lyticity of Padé approximants is to establish the existence of such an infinite

bounded subsequence when both M,N Ñ 8.

These results are particularly powerful when applied to Stieltjes series,

with Baker’s paper [1] providing a particularly detailed treatment of this

topic.
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3 The Anharmonic Oscillator

One of the simplest quantum Hamiltonians that does not, in general, admit

closed form solutions in terms of elementary functions is the quartic oscillator

H “ p2`x2`βx4. As a canonical test case for any perturbative approach, and

because of its relation to φ4 field theories, mathematical physics literature is

rich with the study of this system. Barry Simon, in a series of papers proved

a set of foundational theorems, that have since been built upon in diverse

directions. Here we will review a few results governing the coupling constant

analyticity and convergence of the energy eigenvalues of this system, before

connecting their study to Padé approximants.

3.1 Introduction

For every β ą 0 the energy levels of the Hamiltonian

H “ p2 ` x2 ` βx4 (9)

are analytic in the neighbourhood of β P p0,8q. However, Rayleigh-Schödinger

perturbation series for this system diverges for every β.

The study of this Hamiltonian is of particular interest to theoretical

physics because the methods used are directly relevant to field-theoretic sys-

tems of the form

L “ BµφB
µφ´m2φ2

´ βφ4, (10)
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and can in fact be directly transferred to the field theory case if we insist

the the fields be normal ordered. Generalising to non-normal ordered fields

is non-trivial, but still promising.

One of the earliest results in the area comes from the famous Bender-

Wu paper [7] which describes the three sheet branched structure of the β “

0 singularity, provides bounds on the Rayleigh-Schrödinger coefficients of

E0pβq and conjectures the asymptotic behaviour of the perturbation series

coefficients.

In a series of papers, Barry Simon then went on to produce several key

results in the field including the detailed structure of the the complex Enpβq

plane and a rigorous proof of the Bender-Wu formula, among others. Loeffel,

Martin, Simon and Wightman[6] introduced the use of Padé approximants to

the field, which allowed for extremely accurate numerical estimates. Graffi,

Grecchi and Simon [5] proved the perturbation series for the energy levels

of the x4 oscillator can be obtained using a generalised Borel summation

method and Padé approximants.

In subsection 2, we review the background material associated with the

study of quartic oscillators. Subsection 3 discusses some key results proven

in the aforementioned papers.
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3.2 The x4 Oscillator

For the purposes of this problem, it is instructive to study the more general

Hamiltonian

Hpα, βq “ p2 ` αx2 ` βx4 (11)

with eigenvalues Enpα, βq. We can apply a scaling argument to these energy

eigenvalues through the scale transformation

p ÞÑ λp, x ÞÑ
x

λ
ùñ Hpα, βq ÞÑ λ2Hp

α

λ2
,
β

λ6
q (12)

but because scaling is a unitary transformation, both Hamiltonians have the

same energies. In particular, we can transform between x4 as a pertubation

of the x2 oscillator and x2 as a perturbation of the x4 oscillator through

Enp1, βq “ β
1
3Enpβ

´ 2
3 , 1q (13)

Hence it is equivalent to study Enpα, 1q as αÑ 8 and Enp1, βq as β Ñ 0,

so the cube root nature of the singularity follows. This also indicates that

Enpα, βq is essentially a complex function of only one variable, and hence

allows us to apply single-variable complex analysis techniques.

lim
αÑ0`

Enpα, βq “ β
1
3Enp0, 1q (14)

The α Ñ 0` limit corresponds to massless field theory models. For
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any α0 ą 0, Enpα0, βq has infinitely many branch points near β “ 0. As

α Ñ 0`, all the branch points approach 0 and at α “ 0 they merge into a

single branch point at β “ 0.

Simon proves that Enp1, βq has a convergent (strong-coupling) expansion

in β´
2
3 convergent for large β[4]. He then proves the following result

Theorem 3.1. Every analytic continuation of Enpα, 1q is real on the real

axis and on every sheet, Imα ą 0 ùñ ImEn ą 0

These techniques also explain the divergence of the perturbation expan-

sions for E. Enp1, βq is not analytic near β “ 0. Hence Enp1, βq cannot be

represented by a convergent Taylor series in any neighbourhood of β “ 0.

3.3 Global Structure of En

It is conjectured that that Enpα, 1q can only have isolated singularities in the

finite α plane. On the contrary, assume there is a non-isolated at α0.

Case I: α0 is the limit point of isolated singularities. Then Enpα, 1q goes

to infinity as αÑ α0 crossing infinity many levels along the way.

Case II: α0 is the limit point of non-isolated singularities. Then α0 lies

on a natural boundary, so En is singular on a whole curve or on a Cantor

subset of a curve.

Both cases appear to be unphysical hence the conjecture.

There are two key results in the case of isolated singularities.
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Theorem 3.2 (Simon, 1969). Enpα, 1q has no poles or essential singularities.

Algebraic branch points have no negative powers in their Puiseux series.

This argument does not exclude logarithmic branch points, but as with

natural boundaries, these are conjectured not to exist because they appear

to be unphysical. However, Loeffel and Martin [ref] proved that there are no

branch points of Enp1, βq of any kind in the region | arg β| ă π.

This leaves us to study the case of the β “ 0, α “ 8 singularity. The

global nature of this singularity is illustrated by the following theorem

Theorem 3.3 (Simon, 1969). Let γr0, 1s Ñ C be a path in the β plane

obeying

1. γp0q “ γp1q P R

2. @t P r0, 1s pγptqq˚ “ γp1´ tq

3. γ has winding number 3

4. Enpα, 1q is continuable along γ

Then

Enrγp1q, 1s “ Enrγp0q, 1s, (15)

i.e., continuation along a sufficiently nice closed loop γ brings us back to

where we started.

Remark. 1. The second conditions essentially requires that γ circles around

complex conjugate branch points in complex conjugate ways.
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2. This theorem tells us that if we draw branch cuts between complex

conjugate points, we get a single-valued function on each sheet.

Proof. γp1
2
q is real and Enpα, 1q is real for real α near γp1

2
). Thus,

Enpγptq, 1q “ E˚nrγp1´ tq, 1s, (16)

by the Schwartz reflection principle. Since Enrγp0q, 1s is real, we are done.

An interesting open question in the field is to prove that Enpα, 1q can only

have isolated singularities (in the finite α plane). Loeffel et al.[6] have shown

this is true for | argα| ă 2π
3
. The eigenvalues of Hpα, βq are the implicit

solutions of an equation ψpα,Eq “ 0, where ψ is an entire function of α

and E. It would suffice to show that no function so defined has a natural

boundary (and no explicit counter-example appears to be known).[3]
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4 Applications of Padé Approximants to the

Anharmonic Oscillator

The main result of this section is Loeffel and Martin’s proof that any diagonal

Padé sequence rN,N ` js formed from the Rayleigh-Schrödinger series for

En converges to Enp1, βq uniformly on compact subsets of the cut plane.

The convergence of these diagonal Padé approximants leads to interesting

possibilities for the Feynman series of a relativistic field theory. For instance,

it is conjectured that the convergence of the diagonal Padé approximants is

connected to the ground state energy density (=sum of connected vacuum

graphs) in a d “ 1` 1 φ4 theory.

Theorem 4.1 (Loeffel and Martin, 1969). The Pade approximants rN,N `

jspxq converge as N Ñ 8 uniformly on compact sets if j is fixed. The limits

of these sequences are equal to each other and to Enp1, βq.

Proof. The proof of this theorem is quite involved and uses a series of impor-

tant results about the analytic properties of the energy levels proved through

a series of papers in the 1960s.

The key results used are[3]:

1. Enp1, βq, has an analytic continuation to a cut plane, cut along the

negative real axis[8]

2.

Im β “ 0 ùñ ImEnp1, βq “ 0 (17)
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3. The Rayleigh-Schrödinger series is asymptotic to Ep1, βq as β Ñ 0

uniformly in | arg β| ď π [3]

4. For β large and fixed n, |Enp1, βq| „ Cβ
1
3 . This follows from a result of

Kato.[9]

Let an be the Rayleigh Schrodinger coefficients of Ep1, βq. It is known

that

an “ p´1qn`1
ż 1

0

γndρpγq (18)

where

dρpγq “ lim
εÑ0`

1

πγ
ImEp1,´

1

γ
` iεqdγ (19)

dρpγq is a positive measure so p´anq defines a Stieltjes series. This casts the

proof into what is essentially a moment problem, of inverting the mapping

that takes the measure to the sequences of moments. By applying the con-

vergence and analytic properties of Padé approximants we proved in section

2 to Stieltjes series [1], it follows that rN,N`js converges for any fixed j, say

to fjpβq. Each fj obeys the same conditions as Enp1, βq, hence both dρpγq

and

dρjpγq “ lim
εÑ0`

1

πγ
Im fjp´

1

γ
` iεqdγ (20)

solve the moment problem for the panq given in the above equation. Then

by a uniqueness theorem of Carleman [1], ρ “ ρj. Thus fj ´ E is entire and

has a zero asymptotic series. This means that fj ´E is. identically zero i.e.
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fj “ E. Hence for any fixed j the Padé approximants rN,N ` js converge

uniformly to Enp1, βq as N Ñ 8
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5 Conclusion

There is, of course, a lot more to say about Padé approximants. Their theory

forms a rich body mathematical literature and their applications extend far

beyond just the anharmonic oscillator. They appear in analytic number

theory through the Riemann-Padé function and in the DLog Pad method.

They are also used in the study of differnential equations. They have rich

applications in mathematical physics too, including applications to the Ising

Model, thermodynamics of lattice gasses, forward scattering amplitude series,

the Heisenberg model and the many body problem among others.

The quartic oscillator is simply a gateway to rich mathematics and physics,

from the study of polynomial oscillators and multi dimensional oscillators to

other systems without analytic solutions. They eventually lead to studies in

field theory, and rich and active area of research.

The references provide much greater breadth and depth than can be cov-

ered in a single thesis. While I have attempted to select the results most

relevant to the single topic I have chosen to study, and present them through

a coherent narrative, the interested reader will find the references to be a

treasure trove of compelling mathematics on a broad range of topics.
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